
Yicheng Feng, Shihao Shen, Xiaofei Wang,

Qiao Xiang, Hong Xu, Chenren Xu, Wenyu Wang

BREAK: A Holistic Approach for

Efficient Container Deployment among

Edge Clouds

Edge Computing Research Group, CIC, TJU

Tianjin University, Xiamen University, The Chinese University of Hong Kong,

Peking University, PPIO Cloud Computing (Shanghai) Co., Ltd

1 Background

2 Motivation

3 Design

4 Experiments

Contents

5 Conclusion

1

What is the Container?

► Container = isolated processes

► Filesystem, resources

► Lightweight virtual machine

► Container image = stack of layers

► Template for creating a container.

► Metadata and layer content

► Easy to develop and package:

► Pull the container image

► Mount layers and start…

metadata

...

manife

st.json

6d891ca

..json

resposit

ories

sha256: bb2161f3a10...

sha256: a110e587166...

sha256: 9da01ef986a...

json versionlayer.tar

layers

Docker Image FormatContainer Image

Redis

Background

1

What is Container Orchestration?

► Strategy to manage containers

► Creating, scaling, upgrading containers...

► To automate a series of container tasks

► Container configuration and scheduling…

► Container deployment and scaling…

► Simplify management and save cost:

► Automated management on a large scale…

► Avoid repetitive tasks and save cost…

Kubernetes Docker Swarm

Apache Mesos (With

Marathon)

…

Others

Background

Rapid advancement

1

Emergence of edge computing

Centralized Cloud Computing Distributed Edge Computing

• Low latency. Computing
resources are deployed on
edge nodes close to end
devices to achieve faster
response time.

• Bandwidth saving. Data
processing and analysis are
performed at the edge of the
network to reduce the
demand for backbone network
bandwidth.

• Data privacy. Sensitive data
can be processed and stored
on edge devices to reduce the
risk of data during
transmission.

Advantages of Edge Computing

Background

Background1

► Containers-as-a-Service

► Amazon ECS, Azure Container Instances…

► Scaling in Function-as-a-Service

► FaaSNet [Wang et al., ATC]

► Software updates

► Upgrading of container version …

Efficient Container deployment

More and more latency-sensitive

services are deployed in edge-clouds

2

Challenges in Edge Clouds

► High latency, low bandwidth links

► Slow to download images from remote registries …

► Unstable network performance, heterogeneous resources

► Complicated container placement…

► Resource constraints in edge clouds:

► Storage granularity of a complete container image is expensive…

Motivation

Motivation2

► Existing solutions are difficult to

adapt or incompatible:

► Large number of redundant files

► Slow down image transfers

► Strain bandwidth and storage

Docker Hub analysis reveals that over 99.4% of

files contain duplicates [Zhao et al., TPDS’20].

► Popularity characteristics

► Hot” images, “hot” layers…

► “Daily changing demand...

► contribute to 80%...

► Inefficient pull operations

► Repeated pulling and loading of image files

► Container loading is inefficiently sequential

► Datacenter-oriented solution…

► Only focus on one part of the deployment

pipeline

► Granularity changes import new cost

and compatibility issues

98× higher layer pull latency brought by a new

granularity structure solution [Zhao et al., ATC].

Design3

Design3

Design3

Container Image Refactoring

Step 1: Generating file

metadata and merged view

Step 2: Determine the share ability

of files based on the merged view

Step 3: Refactoring

the new layer structure

Design3

Container image

clouds

local

edges

Layer-stack and Cooperative Cache

General image

granularity caching

BREAK layer

granularity caching

popular layer1

popular layer2

popular layer1

popular layer2

Collaborative Deployment Protocol (push-based)

► Three different sources: cloud, edge, and local

► Enabling ubiquitous sharing of container image

layers in edge clouds.

Design3

Scheduling module: extending K8s with network-

aware (through a tailored measuring module with

K8s label mechanism) and layer-aware capacities.

User-friendly:

Service YAML with

Custom restrictions

User-friendly:

Scheduler YAML with

custom factor weight

Customized Scheduler

Design3

Image metadata

BREAK Driver

../docker/image/overlay2

../var/lib/docker/

overlay2/../diff

Metadata

folder

Layer content

folderArrived layer tarball

Parallel asynchronous pulling

► Pre-establish folders and files for image

generation based on metadata information.

► Asynchronously downloaded image files

are mapped to corresponding folders upon

arrival at the local system.

Experiments4

Experimental Setup

► Testbed setup

► Four edge cloud clusters (each with 1 master node, four worker nodes)

► Worker node: 2 vCPUs and 4GB RAM

► Mater node: 4 vCPUs and 8GB RAM

► Various network environments (bandwidth and RTT)

► Container and workloads

► 17 popular official container images (5.96GB) from Docker Hub

► Real workload dataset from IBM

► Kubernetes v1.24.10, Docker Registry 2.0 v2.8.1

3

BREAK increases the

proportion of shareable

layers, reducing the

size of redundant files

by a total of 3.11 times.

Experiments

Image name 1.python 2.golang 3.openjdk 4.ubuntu 5.memcached

6.httpd 7.mysql 8.mariadb 9.redis 10.postgres 11.rabbitmq

12.registry 13.wordpress 14.ghost 15.node 16.flink 17.cassandra
0

200

400

600

800

S
iz

e
(M

B
)

4000

4500

5000

5500

ALL

S
iz

e
(M

B
)

Before refactoring

After refactoring Unique layer before refactoring

Shared layer before refactoring

Unique layer after refactoring

Shared layer after refactoring

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Image name (corresponding to table above)

0

75

50

25

S
h

a
re

a
b

le
 f

il
es

 (
%

)

Before refactoring

After refactoring

Image name (corresponding to table above) All images

3 Experiments

BREAK enhances the extraction process of

container images and accelerates container

deployment effectively across various

network conditions and cache sizes,

achieving a performance improvement of

approximately 1.4× compared to other

leading solutions.

Conclusion4

► We design an image refactoring solution which is backwards compatible with current container

engines and standard registries. It optimizes and preserves the convenient stack-of-layers

structure of images.

► We propose a distributed, layer-level cache solution for layer pre-fetching, enabling cooperative

container deployment by facilitating image layer transfer among geographically nearby edge clouds.

► We develop a customized K8s scheduler which additionally considers network performance,

disk space, and image layer caches to make appropriate container placements with layer sharing.

► We identify the issues associated with current image extraction methods and propose a storage

driver that enables parallel extraction of image layers, while eliminating redundant operations.

Contributions:

Thanks everyone!

