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What is the Container?

► Container = isolated processes 

► Filesystem, resources 

► Lightweight virtual machine

► Container image = stack of layers 

► Template for creating a container.

► Metadata and layer content

► Easy to develop and package: 

► Pull the container image

► Mount layers and start…
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What is Container Orchestration?

► Strategy to manage containers

► Creating, scaling, upgrading containers... 

► To automate a series of container tasks

► Container configuration and scheduling…

► Container deployment and scaling…

► Simplify management and save cost: 

► Automated management on a large scale…

► Avoid repetitive tasks and save cost… 

Kubernetes Docker Swarm

Apache Mesos (With 

Marathon)

…

Others

Background

Rapid advancement
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Emergence of edge computing

Centralized Cloud Computing Distributed Edge Computing

• Low latency. Computing
resources are deployed on
edge nodes close to end
devices to achieve faster
response time.

• Bandwidth saving. Data
processing and analysis are
performed at the edge of the
network to reduce the
demand for backbone network
bandwidth.

• Data privacy. Sensitive data
can be processed and stored
on edge devices to reduce the
risk of data during
transmission.

Advantages of Edge Computing

Background
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► Containers-as-a-Service

► Amazon ECS, Azure Container Instances…

► Scaling in Function-as-a-Service

► FaaSNet [Wang et al., ATC]

► Software updates 

► Upgrading of container version … 

Efficient Container deployment

More and more latency-sensitive

services are deployed in edge-clouds
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Challenges in Edge Clouds

► High latency, low bandwidth links

► Slow to download images from remote registries …

► Unstable network performance, heterogeneous resources 

► Complicated container placement…

► Resource constraints in edge clouds: 

► Storage granularity of a complete container image is expensive…

Motivation
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► Existing solutions are difficult to

adapt or incompatible:

► Large number of redundant files

► Slow down image transfers

► Strain bandwidth and storage

Docker Hub analysis reveals that over 99.4% of 

files contain duplicates [Zhao et al., TPDS’20].

► Popularity characteristics 

► Hot” images, “hot” layers…

► “Daily changing demand...

► contribute to 80%...

► Inefficient pull operations

► Repeated pulling and loading of image files

► Container loading is inefficiently sequential

► Datacenter-oriented solution…

► Only focus on one part of the deployment 

pipeline

► Granularity changes import new cost 

and compatibility issues

98× higher layer pull latency brought by a new 

granularity structure solution [Zhao et al., ATC].
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Container Image Refactoring 

Step 1: Generating file 

metadata and merged view

Step 2: Determine the share ability

of files based on the merged view

Step 3: Refactoring 

the new layer structure
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Container image

clouds

local

edges

Layer-stack and Cooperative Cache

General image 

granularity caching

BREAK layer 

granularity caching

popular layer1

popular layer2

popular layer1

popular layer2

Collaborative Deployment Protocol (push-based)

► Three different sources: cloud, edge, and local

► Enabling ubiquitous sharing of container image

layers in edge clouds.
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Scheduling module: extending K8s with network-

aware (through a tailored measuring module with

K8s label mechanism) and layer-aware capacities.

User-friendly: 

Service YAML with

Custom restrictions

User-friendly: 

Scheduler YAML with

custom factor weight 

Customized Scheduler
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Image metadata

BREAK Driver

../docker/image/overlay2

../var/lib/docker/

overlay2/../diff

Metadata

folder

Layer content

folderArrived layer tarball

Parallel asynchronous pulling

► Pre-establish folders and files for image 

generation based on metadata information.

► Asynchronously downloaded image files 

are mapped to corresponding folders upon 

arrival at the local system.
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Experimental Setup

► Testbed setup

► Four edge cloud clusters (each with 1 master node, four worker nodes)

► Worker node: 2 vCPUs and 4GB RAM

► Mater node: 4 vCPUs and 8GB RAM

► Various network environments (bandwidth and RTT)

► Container and workloads

► 17 popular official container images (5.96GB) from Docker Hub

► Real workload dataset from IBM

► Kubernetes v1.24.10, Docker Registry 2.0 v2.8.1
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BREAK increases the 

proportion of shareable 

layers, reducing the 

size of redundant files 

by a total of 3.11 times.

Experiments

Image name 1.python 2.golang 3.openjdk 4.ubuntu 5.memcached

6.httpd 7.mysql 8.mariadb 9.redis 10.postgres 11.rabbitmq

12.registry 13.wordpress 14.ghost 15.node 16.flink 17.cassandra
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3 Experiments

BREAK enhances the extraction process of 

container images and accelerates container 

deployment effectively across various 

network conditions and cache sizes, 

achieving a performance improvement of 

approximately 1.4× compared to other 

leading solutions.
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► We design an image refactoring solution which is backwards compatible with current container 

engines and standard registries. It optimizes and preserves the convenient stack-of-layers 

structure of images.

► We propose a distributed, layer-level cache solution for layer pre-fetching, enabling cooperative 

container deployment by facilitating image layer transfer among geographically nearby edge clouds.

► We develop a customized K8s scheduler which additionally considers network performance, 

disk space, and image layer caches to make appropriate container placements with layer sharing.

► We identify the issues associated with current image extraction methods and propose a storage 

driver that enables parallel extraction of image layers, while eliminating redundant operations.

Contributions:



Thanks everyone!


