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Figure 5: An example of our approx-refine mechanism for sorting.
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Figure 3: Impact of imprecision of
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1. We showcase that approximate storage can be not only be

 Characterize unsortedness: Rem(X) = n - max{ k | X has used for approximate computing, but also improving performance
an ascending subsequence of length k } and/or energy efficiency of precise computing.
2. We evaluate four sorting algorithms on hybrid storage systems.
* Takeaways: We demonstrate great potential of approximate storage to
- Different sorting algorithms have very different behaviors on provide speedup with handful inaccuracies.
approximate memory. | | 3. It is a nontrivial task to refine imperfect results. Refine
* When memory is not over-approximate, some algorithms algorithms should make fully use of the marginal unsortedness

can achieve marginal unsortedness. and introduce negligible overhead.




