
Figure 5: An example of our approx-refine mechanism for sorting.
Imprecise elements are marked in bold and italic. Disorders after the

approx stage are marked in bold and underlined

Figure 4: An 160K-integer
sequence after sorting in a 1.5X

faster approximate memory

Figure 1: Differences between a precise (a) and
approximate (b) multi-level cell

 Recently, approximate storage emerges in the area of computer
architecture. It trades off precision for better performance and/or
energy. Previous studies have demonstrated the benefits for
applications that are tolerant to imprecision such as image
processing. However, it is still an open question whether and how
approximate storage can be used for applications that do not
expose such intrinsic tolerance.
 In this paper, we study one of the most basic operations in
database, sorting, on a hybrid storage system with both precise
storage and approximate storage.
Contributions:
1. The first to leverage precise computing on approximate storage.
2. A novel approx-refine mechanism to guarantee precise sorting
on hybrid-memory machines.
3. Experimental results show that approximate storage can
improve performance of sorting by up to 11%.

Conclusion

Introduction

A Study of Sorting Algorithms on Approximate Memory

Presented by: 
Xtra Computing Group@NTU/NUS

http://pdcc.ntu.edu.sg/xtra/
Shuang Chen*, Shunning Jiang* (SJTU, NTU),

 Bingsheng He (NUS), Xueyan Tang (NTU)

Background

Figure 3: Impact of imprecision of
approximate memory (T) on write

performance and accuracy for a 2-bit MLC
 cell (from Monte-Carlo simulations).

Approx-Refine Mechanism

* Currently at Cornell University

We study:
• Mergesort
• Quicksort
• LSD Radixsort
• MSD Radixsort

Sorting on Approximate Memory

AlgorithmHardware
Architecture

•Takeaways:
• Different sorting algorithms have very different behaviors on

approximate memory.
• When memory is not over-approximate, some algorithms

can achieve marginal unsortedness.

Figure 6: Relationship between imprecision (T) and performance
(write reduction) of different algorithms. Please refer to our paper

for more detailed evaluations on approximate memory models.

Figure 2: Architecture of a system with
hybrid memory

•Characterize unsortedness: Rem(X) = n − max{ k | X has
an ascending subsequence of length k }

Evaluation

1. We showcase that approximate storage can be not only be
used for approximate computing, but also improving performance
and/or energy efficiency of precise computing.
2. We evaluate four sorting algorithms on hybrid storage systems.
We demonstrate great potential of approximate storage to
provide speedup with handful inaccuracies.

3. It is a nontrivial task to refine imperfect results. Refine
algorithms should make fully use of the marginal unsortedness
and introduce negligible overhead.

• Sorting algorithms are accelerated on approximate memory in
the appox stage. Most algorithms get almost sorted sequences
after the approx stage.

• Nearly sorted sequences are refined to be strictly sorted on
precise memory in the refine stage.

Challenges of the refine stage:
• overhead of copying data between approximate and precise

memory is not negligible
• must introduce as few memory writes as possible
Solutions of a lightweight refine algorithm:
• fully make use of presortedness of the sequence Key
• use heuristics to find an approximate LIS in O(n)
• only introduce 2n+Rem(Key) memory writes in total

