ISSN  1007-7626 http: //cjbmb.bjmu.edu.cn 2020 10

CN 11-3870/Q Chinese Journal of Biochemistry and Molecular Biology 36( 10) : 1220~1227

DOLI: 10. 13865/j.cnki.cjbmb.2020. 09. 1297

1) 1) 1) 1) 2)*
( 1) 214122;
2 214122)
0 Louvain
( xyna_strli) ( xyna_theau)
7 GLU37 LEUS o o8 08"
GLU237 o
X ; ; : Louvain

Q71

Analysis of the Xylanase Thermostability from the Perspective of Dynamic
Residue Network Community
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Abstract Xylanase has important applications in food feed paper making textile and so on. The study
on the heat resistance of xylanase is helpful to explore its potential application fields and improve its
economic values. In this paper we used the Louvain algorithm to detect the dynamic residual interaction
network of the Streptomyces lividans xylanase ( xyna_strli) and the Thermostable aurantiacus xylanase
( xyna_theau) . And the relationship between the evolution of the communities and the thermal stability of
the xylanase was analyzed. The results showed that the terminal of xyna_strli has stable interaction; the
residues centered on GLU37 and LEUS stabilized the structure of enzyme. In xyna_theau the thermal
stability of the enzyme was enhanced by the interaction between a8 and «8". By analyzing the stable
communities it was found that the ends of the enzymes contained in the stable communities improved the
thermal stability through the stable interaction. Compared with xyna_strli the stable community of xyna_
theau maintained the stability of more short helices and more flexible regions and its residues near
GLU237 of the active site reduced the contact between the active site and the substrate and improved the
stability.
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Table 1

network community

Modularity of the xylanase residue interaction

Xylanase / Temperature The modularity Q

Xyna_strli/300 K 0.679
Xyna_strli/400 K 0. 690
Xyna_theau/300 K 0. 691
Xyna_ theau /400 K 0. 699
Gephi xyna_strli 300 K
1
( Fig.4) . Fig.4
Louvain

2.2

1223
xyna_strli  xyna_theau 300 K 400 K
o Table 2
o Table 2
xyna_strli xyna_ theau 300 K
21
xyna_theau
xyna_strli o
Table 2 Stable societies of xylanase at different
temperatures
Degree of stability in Stable .
Xylanase/ . community
a stable community .
Temperature . size ( Nodes
( Proportion)
edges)
Xyna_strli/300 K 100% 21 45
Xyna_strli/400 K 38% 19 27
Xyna_theau/300 K 100% 28 57
Xyna_theau/400 K 43% 19 36

Table 3 Some residues and their secondary structures in the stable communities

Corresponding situation Residues in the stable communities

The secondary
structure of residues

The same residues in the stable ALA1 GLU2 SER3 THR4 GLY6 ALA7 ALA8 ALA9 ALAI10

communities of xyna_strli at 300 K and GLNI11 SER12 GLY13 ARG14 0-oop
400 K LEU300 ASN301 GLY302 a8
The unique residues in the stable LEUS a0
communities of xyna_strli at 400 K ARG36 GLU37 al
The same residues in the stable
communities of xyna_theau at 300 K LEU238 ASP239 ILE240 ALA241 GLY242 ALA243 loop7
and 400 K
The unique residues in the stable ALA270 ASP271 PRO272 ASP273 SER274 TRP275 ARG276 o8"Hoop
communities of xyna_theau at 400 K ALA277 SER278 THR279 THR280 THR281 LEU282 a8"Hoop
Fig.6 Fig.6
Fig.5 xyna_strli 300 K N
GLU2 ALA7 ALAS8 ALA9 C
GLN11 LEU297 LEU300  ASN301. . 7
400 K ALA8 ALA9 ALA10. o Mahanta
N C ’
ALAS LEU300 o N C o
xyna_theau 300 K
ILE240 ASP247 TYR248 ILE297. o
ASP239 ALA241 ARG276 P,
ALA277 THR279 PRO281. N N-C
C xyna _theau o
GLU237 ASP239 ILE240 ASP240 2.3

ALA241 o
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Detecting the community
structure by Louvain algorithm

The residue interaction network after
community detection

The original residue interaction network

Fig.4 Organization of xyna_strli residual interaction network in frame 1 at 300 K The left side represents the original
residue interaction network and the right side represents the residue interaction network after community detection by Louvain

algorithm. Residues of the same color are clustered into the same community
xyna_strli/400K

(A) (B)

D)

xyna_theau/400K

Fig.5 Stable communities The figure shows the stable community in which the degree of residual node is represented by the

size and color. The larger degree of a residual node the larger size and the deeper the color of the node

300 K 400 K

o o xyna _strli
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xyna_strli/300K

xyna_strli/400K

©

Fig.6 The corresponding position of the stable community in the three-dimensional structure The blue part is the stable
community the red part is the helix the yellow part is the beta strand and the green part is the loop region
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xyna_

o strli o

xyna_strli 300 K 400 K
Table 3,
( Fig.7)

xyna_strli C LEU300 ASN301
ASN301  GLY302

o8 C i o8 C Fig.7 The same structure in the stable community of
xyna_strli at 300 K/400 K The blue part is the same

ASN301 ALAB structure in stable community the black line represents the
al a0 o a0 interaction between residues and the area in the black box is

enlarged

ALA8.THR12.ALA11.GLY10.SER7  ALA4

[13 ”»

o0 xyna_strli 300 K.400 K
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300 K LEUS.ARG36.GLU37 o
400 K o xyna_theau
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Fig.8 The secondary structure of the unique residues .
of xyna_strli at 400 K The blue part is the secondary + THR279 ALA241 ARG278
structure of the unique residues in stable community of xyna ALA241 PRO281 ILE240 ALA241 &
_strli at 400 K 0L8'—100p\

Fig.9 The same structure in the stable community of
xyna_theau at 300 K/400 K

structure in the stable community the purple part is the

active site GLU237

The blue part is the same

xyna_theau 300 K.400 K
Table 3.
( Fig.9)
xyna_ theau loop7 ALA243
ALA241 ALA241 ILE240 1LE240 ASP239,
LEU238 0
xyna_theau GLU237
o ( loop)

21
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Fig.10 The secondary structure of unique residues of
xyna_theau at 400 K
structure of the unique residues in the stable community of
xyna_strli at 400 K

The blue part is the secondary
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