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Abstract

Large Language Model (LLM) inference is growing in-
creasingly complex with the rise of Mixture-of-Experts (MoE)
models and disaggregated architectures that decouple compo-
nents like prefill/decode (PD) or attention/FFN (AF) for het-
erogeneous scaling. Existing simulators, however, fall short in
modeling the system-level complexities of distributed serving,
and thus are unable to capture the intricate system dynamics
of these emerging paradigms. We present Frontier, a high-
fidelity simulator designed from the ground up for this new
landscape. Frontier introduces a unified framework to model
both co-located and disaggregated systems, providing native
support for MoE inference with expert parallelism (EP). It en-
ables the simulation of complex workflows like cross-cluster
expert routing and advanced pipelining strategies for latency
hiding. To ensure fidelity and usability, Frontier incorporates
refined operator models for improved accuracy. Frontier em-
powers the community to design and optimize the future of
LLM inference at scale.

1 Introduction

The demand for scalable and cost-effective Large Language
Model (LLM) serving is driving a fundamental shift away
from traditional, co-located deployments. The industry is ac-
tively exploring next-generation paradigms to improve per-
formance and efficiency [2, 5,8, 11, 12, 14, 16, 17]. These
include Mixture-of-Experts (MoE) models [10-13], which em-
ploy sparse activation to scale parameter counts sub-linearly
with compute costs, and disaggregated architectures. Disag-
gregation splits the inference process into distinct compu-
tational stages such as separating compute-intensive prefill
from memory-bound decode [2, 16] (PD disaggregation) or
decoupling Attention from FFN computations [14, 17] (AF
disaggregation)—to optimize resource usage for each. Such
approaches offer a promising path to improving the critical
trade-off between system throughput and user-perceived in-
teractivity, often referred to as the Pareto frontier [4, 12, 17].

While promising, these advanced architectures introduce
unprecedented complexity. Designing a disaggregated sys-
tem, for example, requires navigating a vast and intricate
search space of model partitioning, concurrency control, and
dynamic rate matching between specialized hardware pools.
Similarly, MoE models introduce systemic challenges of to-
ken load imbalance across experts and expensive collective
communication for result aggregation [11]. Optimizing these
systems through empirical, trial-and-error experimentation on
real hardware is prohibitively expensive and time-consuming,
given the immense configuration space [4,7,12]. For example,
identifying the optimal serving configuration for a standard
72B dense model in a 16-GPU co-located cluster setting can
consume around 18,000 GPU-hours—amounting to a cost of
over $93,000 [4].

High-fidelity simulation is a promising tool for tackling
this complexity [4,7]. However, state-of-the-art simulators
like Vidur [4] are built around a replica-centric abstraction,
which is fundamentally misaligned with the architecture of
fully distributed and disaggregated LLM inference systems.
This traditional design views the system as a pool of homoge-
neous, self-contained replicas, reducing the primary challenge
to load-balancing requests among them. This core assump-
tion is broken by disaggregated and MoE architectures, where
inference is no longer a monolithic task but a multi-stage
workflow orchestrated across specialized, heterogeneous clus-
ters. The replica-centric model lacks the native primitives to
represent this workflow, including inter-cluster routing, data
transfer (e.g., KV-Cache), and complex synchronization. The
critical abstraction has thus shifted from managing a pool of
replicas to orchestrating the flow of a request through a dis-
tributed system—a concept prior simulators cannot natively
represent.

Accurately simulating these new paradigms requires ad-
dressing three fundamental challenges.

First, the challenge of intra-node modeling fidelity: pushing
the accuracy and completeness of operator-level modeling.
The foundation of any simulator is its ability to accurately
model the execution within a single computational graph, a do-
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main where existing simulators have primarily focused [4, 7].
However, this foundation is cracking under the pressure of
modern workloads and architectures. Two critical gaps have
emerged: (1) Inaccurate modeling for modern workloads:
The predictive power of existing operator models, particularly
for Attention, degrades significantly on batches with high
variance in sequence lengths. For instance, because Vidur’s
attention model oversimplifies the operator’s runtime char-
acteristics, we found that it can exhibit an error of over 55%
(0.151ms vs. 0.340ms) for a single FlashAttention operation
on a batch of 72 requests with skewed lengths. Such shortcom-
ings in capturing operator workload dynamics can severely
undermine simulation accuracy—particularly in multi-batch
scenarios. (2) Incomplete modeling for new paradigms: Cru-
cial computational patterns from emerging architectures, such
as the heterogeneous GroupedGEMM in MoE models, are sim-
ply not accounted for, leaving a significant blind spot in per-
formance prediction.

Second, the challenge of inter-node orchestration: creat-
ing a new simulation abstraction for distributed, multi-stage
workflows. Even with perfect intra-node models, fully dis-
tributed systems fundamentally break the traditional replica-
centric abstraction, recasting inference as a distributed work-
flow across specialized, independent clusters—a "system-of-
systems". This demands a new simulation paradigm capable
of modeling inter-node coordination. For instance, simulating
PD disaggregation requires capturing the producer-consumer
dynamics, where the prefill stage’s output rate is constrained
by the decode stage’s memory availability via system-level
backpressure [2, 12, 16]. Likewise, simulating AF disaggre-
gation necessitates modeling a tightly-coupled, fine-grained
pipeline, where the end-to-end latency is determined by the
critical path of an event dependency graph that spans multi-
ple clusters [12, 14, 17]. Existing simulators lack the native
primitives to express these stateful, inter-dependent work-
flows, creating a critical gap in our ability to reason about the
performance of disaggregated architectures.

Third, the challenge of system-level practical constraints:
modeling the diverse and dynamic policies of real-world in-
ference engines. A physically deployed system’s performance
is ultimately governed by the software policies of its serv-
ing engine. Different engines (e.g., vLLM [9], SGLang [15],
TensorRT-LLM [3]) implement a wide array of strategies for
dynamic batching, request scheduling, and memory manage-
ment (e.g., PagedAttention [9]). These policies create com-
plex, dynamic behaviors that significantly impact performance
but are often abstracted away in current simulators. A truly
practical simulation framework must treat these system-level
policies as first-class citizens, allowing researchers to plug in,
compose, and evaluate different strategies—from a specific
batching algorithm to a novel memory management scheme.

To address these fundamental simulation challenges, we
present Frontier, the first simulation framework designed to
systematically explore the design space of next-generation
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Table 1: Comparison of state-of-art inference simulators. PD: Pre-
fill/Decode disaggregation, AF: Attention/FFN disaggregation, EP:
Expert Parallelism. Sched: diverse advanced batching/memory
scheduling. v': full support, X: no support. —: partial or conditional
support.

LLM inference systems, i.e., systems featuring disaggre-
gated and MoE architectures. Our primary contribution is
a novel stage-centric simulation architecture that fundamen-
tally departs from the traditional replica-based abstraction.
This new abstraction provides the native primitives required
to model complex, distributed workflows, enabling Frontier
to capture critical inter-node dynamics. Frontier is grounded
in a high-fidelity execution predictor capable of modeling
data-dependent micro-workflows like MoE straggler effects,
and is exposed through a modular framework with pluggable
modules for exploring diverse, system-level policies from
real-world inference engines. We plan to open source Frontier
to the community.

2 Background and Motivation

2.1 The Next-Generation Inference Paradigms

To overcome the scaling and efficiency limitations of tradi-
tional co-located deployments, the field is converging on two
primary architectural paradigms that restructure the inference
process.

MOoE architecture. MoE models replace dense FFN layers
with numerous "expert" FFNs, only a subset of which are
activated for each token by a router network [10—13]. This
design allows for a massive increase in parameter count with
only a sub-linear rise in computational cost.

Inference disaggregation. This paradigm exploits the dis-
tinct computational profiles of different inference phases by
assigning them to specialized, independent hardware clusters.
This is applied at a coarse grain by separating compute-bound
prefill from memory-bandwidth-bound decode (PD disaggre-
gation) [2, 16], or at a finer grain by decoupling the attention
and FFN computations (AF disaggregation) [14, 17].

2.2 The Simulation Gap of Existing Simulators

Existing LLM inference simulators [4, 7] exhibit a substantial
simulation gap when applied to emerging paradigms. This
gap aligns with the challenges discussed in §1 and is evident
in three key dimensions. Table | contrasts Frontier with prior



simulators. Several intra-framework simulators [12,16], likely
based on simplified roofline models, suffer from low fidelity.

3 Frontier Design

Frontier models the disaggregated and MoE inference based
on the key designs and insights of mainstream frameworks
(e.g., vVLLM [9], SGLang [15], TensorRT-LLM [3]) and works
(e.g., DistServe [16], Step-3 [14], MegaScale-Infer [17]).
Frontier adheres to the event-driven and modular design prin-
ciples established by Vidur [4].

3.1 Architecture Overview

The Frontier Core, depicted in Figure 1, is a hierarchical
system designed to model the complex interactions within
and between specialized compute clusters. The design com-
prises a central orchestration entity, the GlobalController,
and a collection of modular ClusterWorkers, providing a
principled framework for simulating the system-of-systems
nature of modern LLM serving.

Global Controller. The GlobalController is the stateful
orchestrator of inter-stage workflows, essential for model-
ing disaggregated systems. It manages the end-to-end life-
cycle of requests by coordinating events between indepen-
dent ClusterWorkers, supported by integrated modules for
workload generation and performance data. Its key role is
managing complex, state-dependent interactions: in PD disag-
gregation, it models system-level backpressure by initiating
KV-Cache transfers only upon receiving memory availabil-
ity signals; in AF disaggregation, it orchestrates the event
dependency graph for the fine-grained pipeline.

Cluster Worker. A ClusterWorker is the fundamental ab-
straction for a specialized hardware cluster (e.g., a prefill
or attention cluster), containing a ClusterScheduler and a
pool of ReplicaWorkers. The ClusterScheduler manages
local resources and participates in inter-stage coordination,
such as signaling memory availability for pull-based transfers
in PD disaggregation or managing micro-batch handoffs in
the AF pipeline.

Replica Worker. The ReplicaWorker simulates a single
model instance, with its core logic encapsulated in the
Execution Predictor. Moving beyond monolithic opera-
tors, the predictor’s key feature is its ability to decompose a
logical layer into a data-dependent micro-workflow of events.
This is critical for MoE simulation, where it models the gat-
ing decision to generate a token-to-expert assignment map
and simulates expert computation as a set of heterogeneous
tasks. By taking the maximum of these varied task times,
the ExecutionPredictor natively captures the performance
impact of token load imbalance and the resulting straggler
effects.

Frontier Core

q 3
[ Workload Generator ]
(__ Pprofiling Backend ][ Performance Collector |
[ Global Scheduler ]

. /

$ Global Controller  $
( N\
Decode-Attn Stage

Prefill Stage "
g ]
( W ¢ Cluster Scheduler
>
| Cluster Scheduler § =
[[[ Replica Worker ]
o - Y,
Replica Worker 5 Ping-Pong= - Pipeline
Model Runner E)I“ ( Decode-FFN Stage )
i [ Cluster Scheduler ]
.
\_ ") [[[ Replica Worker ]
. )

Cluster Worker

Figure 1: Frontier architecture overview.

3.2 Accurate Operator Runtime Prediction

Challenges. Unlike simple matrix multiplication (e.g.,
GEMM), where runtime mainly depends on input size, many
operators have more complex input characteristics. For exam-
ple, Attention can involve widely varying sequence lengths
within a batch, and GroupedGEMM often faces imbalanced
internal workloads, making runtime prediction significantly
more challenging. Existing methods like Vidur simplify esti-
mation by using a single proxy length (typically the square
root of batch sequence lengths), but this overlooks impor-
tant factors affecting actual kernel execution. In practice,
kernel execution involves partitioning and tiling computa-
tions—processes that become much more complex and less
efficient with input heterogeneity, leading to phenomena such
as wave quantization.

Finer-grained modeling. To overcome these challenges, we
employ fine-grained modeling tailored to the computation
patterns and input characteristics of specific operators. For
Attention, we utilize a rich set of features—including ag-
gregate and distributional statistics of sequence lengths—to
train an ML model (e.g. random forest [6]) that more accu-
rately captures workload dynamics, particularly under high
input variance. Likewise, for GroupedGEMM in MoE, we ex-
tract features that reflect both input properties and expert load
distribution, such as token counts, expert number, model di-
mensions, expert selection ratios, and various load balance
metrics. Such a comprehensive approach yields robust and
precise predictions, even for workloads with highly variable
characteristics.



3.3 Modeling Disaggregated and MoE Infer.

PD disaggregation workflow simulation. The fundamental
problem of simulating PD disaggregation is to accurately
model the producer-consumer dynamics between two spe-
cialized, rate-mismatched subsystems. The core challenge
is capturing the system-level coordination and backpressure
required to balance these two stages under dual SLOs.

Frontier is designed to model these intricate system dy-
namics. For any given PD configuration (i.e., a fixed num-
ber of PD instances with specific parallelism), Frontier sim-
ulates the end-to-end request lifecycle with high fidelity
through a stateful, event-driven workflow: (1). Frontier mod-
els the prefill stage as a producer. When requests arrive,
the GlobalController routes them to the prefill stage. The
ClusterScheduler and ReplicaWorker simulate its queu-
ing and execution. Upon completion, the worker signals
to the Global Controller, which transitions the request’s
state to PREFILL_COMPLETE. At this point, the generated
KV-Cache is conceptually held in the prefill stage’s mem-
ory buffer. (2). The decode stage is modeled as a consumer
with a finite resource: GPU memory for KV-Caches. The
ClusterScheduler of the decode stage continuously tracks
its memory utilization. When a decoding request completes
and its KV-Cache is evicted, the scheduler signals its up-
dated memory availability to the GlobalController. (3).
The GlobalController acts as the central coordinator that
respects backpressure. It maintains a queue of PREFILL_
COMPLETE requests. It will initiate a KV_CACHE_TRANSFER
event for a request.

AF disaggregation workflow simulation. The core simu-
lation challenge, as highlighted by systems like MegaScale-
Infer and Step-3, is to accurately capture the critical path of a
multi-stage, micro-batch-driven workflow, where even small
imbalances between stages can create significant performance-
degrading pipeline bubbles.

Frontier addresses this by simulating the AF workflow
as an event dependency graph. For any given AF configu-
ration, Frontier models the generation of a single token by
orchestrating a complex graph of fine-grained events. (1).
The simulation begins when the GlobalController initi-
ates a decode step. The ReplicaWorker in the decode-attn
stage first partitions this global batch into a series of m simu-
lated micro-batches. (2). Frontier’s GlobalController and
ClusterSchedulers dynamically construct a dependency
graph for all operations across L model layers. Frontier’s
event-driven engine processes this graph by scheduling events
as soon as their dependencies are met. This inherently simu-
lates the overlap: while A_TO_F_TRANSFER (1, k) is in flight,
the simulator can schedule ATTN_COMPUTE (i+1, k) on the
now-free attention GPU, perfectly capturing the latency-
hiding principle of the ping-pong pipeline. (3). The total
time to generate one token is determined by the timestamp
of the final event in the graph—typically FFN_COMPUTE (m,
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Figure 2: CDF of the relative error in simulated operator runtime
under dynamic workloads.

: Profiled Predicted
Batch Avg I
atch Size vg Input  Output throughput  throughput
4 32 1024 111.355 90.498
8 128 256 131.831 109.366
16 256 128 151.425 127.157
32 32 128 313.236 240.743

Table 2: End-to-end performance (throughput in tokens/s/GPU).

L) —completing.

MOoE inference workflow simulation. Simulating MoE in-
ference introduces a unique challenge: modeling a dynamic,
data-dependent workflow where performance is dictated not
by average-case behavior, but by the worst-case straggler
caused by token load imbalance.

Frontier addresses these challenges by decomposing the
MoE layer execution into a detailed, multi-step micro-
workflow within the ReplicaWorker, ensuring that the ef-
fects of imbalance are modeled with high fidelity. (1). Fron-
tier first configures the virtual model sharding to satisfy the
system’s topological constraints (e.g., attn_dp*attn_tp=
=moe_tp*moe_ep). (2). When the ExecutionPredictor en-
counters an MoE layer, it simulates the following sequence
of events, explicitly tracking the consequences of token rout-
ing. The simulation first models the GEMM for the gating
network. Subsequently, a pluggable routing module is in-
voked. Frontier simulates the routing decision to generate a
token-to-expert assignment map for the current batch. With
the assignment map, the simulation of expert computation
becomes heterogeneous. The ExecutionPredictor queries
GroupedGEMM performance model with the actual number
of tokens assigned to it for each expert i. (3). After that, Fron-
tier simulates synchronization and straggler effects. Frontier
models the implicit synchronization barrier by calculating the
latency as max [T_expertl, T_expert2, ..., T_expertN].

4 Preliminary Evaluation

Setup. Experiments are performed on an 8-GPU node fea-
turing NVIDIA A800-SXM4-80GB GPUs with 400 GB/s
NVLink interconnects. The profiling and training environ-
ment is configured with PyTorch 2.3, CUDA 12.1, Ray 2.42.1,
and FlashInfer 0.1.6. End-to-end evaluation is conducted us-



ing vVLLM 0.10.1 with the SharedStorageConnector KV inter-
face. We use the Qwen2-7B-Instruct model [1].

Operator accuracy. We evaluate the accuracy of Frontier on
two critical operators: Attention and GroupedGEMM. These
operators are highly sensitive to variable inputs and prone
to inaccuracies. For the Attention operator, as shown in
Figure 2, Frontier consistently outperforms Vidur, achieving
significantly lower relative errors, with over 94% of cases
falling below 10%. For the GroupedGEMM operator, which is
not supported by Vidur, we report results solely for Frontier.
Frontier demonstrates high accuracy, with over 95% of errors
remaining below 6%.

End-to-End accuracy. We validate the end-to-end accuracy
of Frontier by simulating a PD disaggregated system with a
1:1 ratio of prefill to decode instances. As shown in Table 2,
we compare the predicted system output throughput against
the profiled performance of a real system across a range of
batch sizes and sequence lengths. The results demonstrate
that Frontier captures performance trends, with the predicted
throughput (in tokens/s/GPU) consistently falling within a
19.0% to 23.2% relative error margin across tested cases.

5 Discussion and Conclusion

We introduced Frontier, a high-fidelity simulator tailored for
emerging LLM inference architectures, including disaggre-
gated and MoE systems. Future work will expand on modeling
core operators, quantifying simulation fidelity and cost, and
demonstrating Frontier’s utility through diverse case studies
for large-scale system design and optimization.
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