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Abstract

Simulation offers unique values for both enumeration and
extrapolation purposes, and is becoming increasingly impor-
tant for managing the massive machine learning (ML) clus-
ters and large-scale distributed training jobs. In this paper, we
build Echo to tackle three key challenges in large-scale train-
ing simulation: (1) tracing the runtime training workloads at
each device in an ex-situ fashion so we can use a single device
to obtain the actual execution graphs of 1K-GPU training, (2)
accurately estimating the collective communication without
high overheads of discrete-event based network simulation,
and (3) accounting for the interference-induced computation
slowdown from overlapping communication and computa-
tion kernels on the same device. Echo delivers on average
8% error in training step—~3x lower than state-of-the-art
simulators—for GPT-175B on a 96-GPU HS800 cluster with
3D parallelism on Megatron-LM under 2 minutes.

1 Introduction

The unprecedented success of large language models (LLMs)
has been driven in large part by the large-scale infrastructures
that allow the model and training dataset to scale. Organiza-
tions have constructed massive clusters with tens of thousands
of GPUs to train models with hundreds of billions or even
trillions of parameters [8, 18,24], in a continuous stride to im-
prove model capabilities as promised by the scaling law [25].

Training LLMs on such massive scales consumes sub-
stantial time and financial resources. On the other hand dis-
tributed training is inherently complex and rapidly evolving,
involving a myriad of algorithm/model innovations (linear
attention [26]), parallelism strategies [29, 35, 38, 48], opera-
tion and kernel optimization (kernel fusion [14]), and hard-
ware designs [1]. As a result, accurate simulation of dis-
tributed training has started to garner attention as an essential
tool to effectively manage training infrastructures and sys-
tems [11,15,19,30,44].

Broadly, simulation is useful for two main purposes: enu-
meration and extrapolation. In distributed training context,
simulation can be used to enumerate combinations of par-

allelism strategies, optimization techniques, and hardware
configurations that are available in the current cluster, to de-
rive the optimal training plan for a given job and to determine
efficient resource allocation schedules across jobs. Simulation
is also useful (perhaps more so) to extrapolate beyond what is
currently available, which is paramount for strategic decision
making such as capacity planning [24, 38] that involve many
what-if questions with significant impact. For example, what
speed-up can be achieved by scaling the current cluster by a
factor of 3, or by increasing the network bandwidth by 2x?
This also greatly facilitates the development of new optimiza-
tions, which only need to be prototyped on a small scale for
the simulator to extrapolate its potential benefits on a large
scale quantitatively.

Prior work has made salient progress in training simula-
tion [11,15,19,30,44]. Yet, they fall short in three key aspects
that hinder their capabilities in supporting both enumeration
and extrapolation practically.

First, modern large-scale training often employs 3D par-
allelism, a combination of data parallelism (DP), tensor par-
allelism (TP), and pipeline parallelism (PP), to break down
the large models along different dimensions into sub-models
that fit into a device’s memory and maximize cluster resource
utilization. To accurately simulate 3D parallelism, one needs
to obtain the training workloads, which encompass the device-
or rank-specific execution graphs detailing the computation
and communication operations and their dependencies. Ex-
isting work [11, 19, 30, 31, 49] requires a full-scale cluster
deployment of the job to trace the training workloads from
each and every device at runtime. This is because each device
builds its own execution graph independently in parallel dur-
ing job initialization to most efficiently carry out training of
its unique sub-model according to the 3D parallelism setting
and various optimization techniques (e.g. kernel fusion). The
in-situ tracing approach is clearly very costly and sometimes
even impractical for extrapolation usecases.

Second, simulating collective communication (CC) (e.g.
all-reduce) is critical because (1) it pieces all the devices
and nodes together according to the various parallelisms, and



(2) its performance can often be the bottleneck [16,20,24,32].
However, most existing work [15, 19, 30, 44, 49] rely on a
coarse-grained o-f3 model [40] without considering the actual
communication patterns and optimizations in the implemen-
tation, resulting in significant simulation errors. On the other
hand, more recent work such as SimAI [11] explicitly sim-
ulates each peer-to-peer send and receive primitive of a CC
kernel using a packet-level event-based network simulator
such as ns-3 [36]. This fine-grained approach provides high
accuracy at the cost of prohibitive overheads even at a medium
scale: simulating a 128-GPU job takes SimAI over 2 hours
with an optimized ns-3 implementation (§2.3).

Third, we observe that overlapping communication and
computation operations, an optimization widely used to im-
prove efficiency [13,24,46], incurs non-negligible slowdowns
to the computation due to contention for shared resources
(e.g., cache, DRAM bandwidth) [15,21]. This, however, has
largely been overlook in prior work thus far. Simulating
interference-induced slowdown is particularly challenging
since it depends on many idiosyncrasies ranging from schedul-
ing logic of the ML framework and the underlying library
to hardware-specific implementation optimizations. Much of
these details are vendor-proprietary and inaccessible.

In this work, we propose Echo, a practical simulation plat-
form for large-scale distributed training. Echo is built with
three key design choices. (1) It adopts an ex-sifu tracing ap-
proach to accurately capture training workloads using just a
single device, avoiding the need for a full-scale cluster de-
ployment. The key technical idea here is to transform the
parallel initialization process at each rank into a sequential
one, allowing a single device to act as each rank iteratively
to trace the corresponding execution graph. (2) It employs
white-box modeling to simulate a CC kernel’s performance
with four parts: connection setup overhead, intra-server and
inter-server transmission, and possible data reduction time.
The model is supplemented with exhaustive profiling to obtain
key parameters (e.g. chunk size which determines number
of rounds of transmission for a message) optimized by CC
libraries like NCCL for different hardware features and soft-
ware configurations that affect the individual components
above. This hybrid approach strikes a good balance between
accuracy and efficiency. (3) It introduces an black-box ML-
based slowdown predictor to model the slowdown caused
by overlapping operations. The XGBoost-based predictor re-
lies on categorical features such as transmission protocol and
channel configuration in NCCL, to numerical kernel-level per-
formance statistics such as streaming multiprocessors (SM)
occupancy and DRAM utilization, to capture their complex
interactions.

We implement Echo to support mainstream training frame-
works: PyTorch, DeepSpeed [34], and Megatron-LM [38].
Our implementation with ~10k LoC also includes a suite
of automation tools to facilitate workload tracing and run-
time profiling. We evaluate Echo on H800 and A800 clusters
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Figure 1: Overview of the technical stack and architecture for large-scale
model training.

across a variety of scenarios and models, achieving an average
prediction accuracy of 91.4% in training step time, and is up
to 3x better than the state-of-the-art. For 96-GPU training
of GPT-175B, Echo achieves 92% accuracy in less than 2
minutes. We plan to open source Echo to the community.

2 Background and Motivation
2.1 Large-scale Distributed DNN Training

Figure 1 illustrates the layered technical stack underlying
large-scale training, from high-level models and frameworks
to low-level GPU libraries and networked systems. Today’s
state-of-the-art models often exceed 100 billion parame-
ters [8, 23], and recent GPU architectures (e.g., NVIDIA
Hopper and Ampere) combined with high-speed intercon-
nects (e.g., InfiniBand and RoCE) enable efficient training
at the scale of thousands of GPUs. New parallelization
techniques—such as 3D parallelism [38], communication-
computation overlap [42], and ZeRO [33]—further refine
resource utilization, accelerating the convergence of these
massive models.

ML frameworks. Modern large-scale training frameworks,
such as Megatron-LM [38] and DeepSpeed [34], have become
de facto standards in production settings at companies like
Microsoft, NVIDIA, and Alibaba [11, 34, 38]. These frame-
works implement 3D parallelism—combining DP, TP, and
PP—to efficiently scale model training across large GPU clus-
ters. In brief, DP replicates the model and splits the data, TP
divides model parameters among GPUs, and PP stages model
layers for pipelined execution. Together, these methods accel-
erate training of hundred-billion-parameter models. Further-
more, kernel-level overlap techniques (e.g., communication-
computation overlap) and optimized kernels further minimize
idle times and improve scaling efficiency.

Communication library. Collective Communication Li-
braries (CCLs) facilitate efficient data transfer across GPUs
in distributed systems [43]. Among these, NCCL is the
most widely adopted in production environments [11, 34,
38, 43], providing core communication primitives such as



Training Workload

Simulator Communication 3D Parallelism Overlap Slowdown
Framework-specific op  Ex-situ simulation

FlexFlow [22] X v o — B model v X
Daydream [49] v X o — B model X X
dPRO [19] v X o — [ model X X
DistSim [30] v X o — B model v X
Astra-sim [44] X X o —  model - X
Proteus [15] X v o — [ model v -
SimAI[11] v - Event-driven X
Echo (ours) v v White-box modeling v v

Table 1: Comparison of key features across simulators. v" indicates full support, X indicates no support, and — denotes partial or conditional support. Simulators
are evaluated on training workload generation (framework-specific operations, ex-situ simulation), communication modeling, support for 3D parallelism, and

handling of overlap-induced slowdowns.

all-reduce, all-gather, and reduce-scatter. NCCL
serves as the default communication backend for mainstream
training frameworks and incorporates numerous optimiza-
tions, including advanced topological algorithms and proto-
cols that decompose data transmission into efficient point-to-
point (P2P) transfers.

2.2 Design Goals

The overarching goal of this work is to build a practical simu-
lator for large-scale distributed training. Specifically, we aim
to achieve the following goals:

* High accuracy. The basic goal is to accurately predict
the end-to-end training step time.

* Ex-situ simulation. if the simulator’s input is collected
by deploying the job to the target cluster at full scale, i.e.
in-situ simulation, its utility is fundamentally limited by
the available resources. To be able to explore scales and
scenarios beyond what is currently available, we desire
ex-situ simulation design that can simulate a 1k-GPU
cluster using a single machine for example.

* High efficiency. The simulator should be fast with min-
imal computational overhead especially for large-scale
settings.

 Usability. The simulator should support mainstream
training frameworks, models, and parallelism strategies.
It must also be easy to use, automating the process as
much as possible to minimize manual effort.

2.3 Challenges

Training simulation has started to attract attention recently [11,
15,19,30,44]. Inspired by prior work, we also separately con-
sider computation and communication, and computation can
be relatively easily simulated by offline profiling on a single
device. Yet, to achieve the four design goals, we identify three
key challenges that prior work has not fully addressed. Ta-
ble | summarizes the comparison between Echo and existing
simulators.

Before we discuss the challenges, we note that all experi-

ments in this section are done on a NVIDIA A100 GPU clus-
ter. Each 8-GPU node in the cluster has 600 GB/s NVLINK
intra-node bandwidth, and four Mellanox ConnectX-6 NICs
each with 2x100 Gbps. Training and bus bandwidth tests are
performed using PyTorch’s DDP and NCCL-test [4], respec-
tively.

Challenge 1: How to obtain the actual training workloads
without a full-scale deployment?

Accurate ML training simulation relies on the so-called
training workload as the foundation. The training workload
refers to the execution graph that encodes the dependencies or
execution sequence of computation and communication oper-
ators, plus other necessary information like tensor shapes and
data types. It serves as the blueprint for replaying the training
process (on a given device). In large-scale 3D parallelism
training, each GPU device (rank) independently initializes its
assigned submodel based on TP and PP, resulting in unique
workloads per rank. These workloads are established only
when the training framework begins execution.

Thus for accuracy, one naturally adopts a runtime tracing-
based approach to capture the training workloads [19, 30,
31, 49]: the per-device execution graph is extracted after
each device builds its execution graph in parallel. Yet this
assumes a full-scale deployment of the job on the cluster,
which severely limits the practical utility of the simulator in
large-scale settings and is exactly one of the main motivations
for building a simulator. Some systems like Proteus [15] and
ASTRA-sim [44] choose to manually distribute and maintain
the operators and generate the training workloads in order
to avoid this limitation. However, this hand-crafted approach
is inherently imprecise since it fails to accurately represent
the nuanced runtime characteristics of framework-specific
operations—custom or highly optimized operations tightly
integrated with a particular framework’s execution model (see
§8.2). Such operations often rely on environment-specific op-
timizations that emerge only under full-scale deployment con-
ditions. Without capturing these contextual factors, manually
approximating operation behavior becomes guesswork, lead-
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full-scale deployment becomes our first challenge.

Challenge 2: How to accurately simulate collective commu-
nication without high overheads?

Communication operations are critical in distributed train-
ing, yet hard to simulate as they involve complex interactions
among devices and machines, and are affected by a range of
network factors such as topology, latency, congestion control,
etc. Existing approaches fall into two categories. Most sim-
ulators like ASTRA-sim [44], FlexFlow [22], Proteus [15],
and NCCL-Predictor [9] adopt a o. — 3 model [40], which es-
sentially calculates the running time of a communication op-
eration as tensor_size /bandwidth + latency. Figure 2 shows
the most advanced NCCL-Predictor greatly overestimates
the effective bus bandwidth of all-reduce operations espe-
cially for smaller messages. Note NCCL-Predictor already
uses additional parameters to account for the impact of hard-
ware, communication protocols (TCP vs RDMA), and algo-
rithms (ring vs tree for all-reduce), but the over-simplified
o — P model is inherently limited in capturing complex inter-
actions across all these factors. Moreover, NCCL optimizes
distributed communication by integrating hardware offloading
and acceleration techniques, such as GPUDirect RDMA [5]
and GDRCopy [6], which lead to variations in internal kernel
behavior.

The second, more precise approach involves white-box
modeling specifically targeting collective communication
[11,44]. Since NCCL (and other CCLs) implements a com-
munication operation as an orchestrated series of P2P send
and receive operations, we can simulate each send and re-
ceive to compose the end-to-end result. Similar to the training
workloads, this naturally reflects the complex optimizations
used by CCLs according to topology, NCCL protocol (LL,
LL128 or Simple), network interconnect technologies (IB or
RoCE), algorithm (ring or tree for all-reduce), etc. To faith-
fully simulate the send/receive time, prior work [11,44] uses
packet-level discrete-event network simulators like ns-3 [36],
which takes the actual topology and profiled link bandwidth
as input. Yet packet-level simulation is computationally ex-

Table 2: Statistics about (1) the proportion of overlapped kernels in different
models and the slowdown factors in training step time, and (2) slowdown
factors of some common computation operations. Training is done on a single
8-GPU node of our A100 cluster with other settings unchanged; all-reduce
is the only communication operation here in PyTorch DDP.

pensive as it needs to simulate the entire protocol stack at each
node in the network: We run the most recent SimAI [11] with
an optimized multi-thread ns-3, and observe that simulating
a single iteration on a 128-GPU cluster takes over 2 hours
(7655s) on a 32-core server. Therefore, the challenge is how
to scale the white-box communication simulation efficiently
without sacrificing accuracy.

Challenge 3: How to account for the interference between
overlapping computation and communication?

Overlapping computation and communication is widely
used in practice to improve training efficiency and hardware
utilization [13,24,46]. We find that overlapping introduces
non-negligible slowdowns especially to computation opera-
tions, even though they are assigned to separate streams on
the GPU (contention for shared memory may be a possible
cause). Here, we define the slowdown factor as the ratio of
the running time with overlapping communication kernels to
the running time without communication kernels. As shown
in Table 2, more than 50% computation operations overlap
with communication, leading to a slowdown of up to 1.48x
in training step time. We also examine the slowdown to indi-
vidual kernels. Table 2 (second column group) shows when
overlapped with all-reduce with 25MB messages, running
times of common kernels increase by an average of 37.76%.
The CDF of slowdown factors for all computation kernels of
GPT-2 is presented in Figure 3, where slowdown can reach 8
with an average of 1.70. Some recent work [21] also reported
similar slowdowns in production training clusters. Unfortu-
nately, this phenomenon has been overlooked by most existing
simulation work despite its salient impact. The only work we
know that considers this is Proteus [15]: it simply uses a
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heuristic factor that varies only with GPU architecture and
ML model to obtain the slowdown, which is too coarse to be
accurate and not generalizable to unseen models.

Simulating the interference-induced slowdown is a daunt-
ing task. We ideally would need to model the kernel-level
behavior in order to precisely know how different kernels
overlap. For example, in the widely-used gradient overlap
optimization [46], the simulator must correctly replay the
backpropagation computation kernels and schedule commu-
nication kernels at precise times to achieve accurate overlap.
Further, for a given computation kernel, its slowdown factor is
influenced by various factors of hardware and software setup.
Table 3 shows the slowdown factors of two kernels on differ-
ent GPUs and CUDA versions vary a lot. This is because the
internal implementation, which varies based on the factors
above, ultimately determines how resources are scheduled and
shared among concurrent kernels. These proprietary details
are extremely inaccessible for us, not to mention the com-
plexity of modeling them. Thus, how to practically simulate
the effect of overlapping computation and communication
remains a formidable challenge.

3 Design Overview

Building upon the aforementioned observations and motiva-
tions, we introduce Echo, a simulator tailored for large-scale
distributed training.

Key design choices. We highlight the key choices in building
Echo to address the three challenges in §2.3.

* To obtain training workloads without a full-scale deploy-
ment, Echo employs a novel ex-situ tracing approach. Gen-
erally, ML frameworks support various parallelism in dis-
tributed training in the following way: (1) they initialize
each rank (typically one rank per device) with its own sub-
model based on the parallelism setting, and then (2) each
rank builds its own execution graph to start actual training.
Echo turns this parallel process into a sequential one, us-
ing only one device to act as each rank iteratively to trace
the corresponding execution graph and profile the running
time of each operation at the same time, achieving faithful
workload tracing without requiring the full cluster.

* To achieve efficient communication simulation without high
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Figure 4: Echo architecture overview. The green components represent the
core modules of Echo.

overheads, Echo employs a white-box modeling approach
with empirically profiled parameters that strikes a good bal-
ance between accuracy and efficiency. Our model is derived
closely after NCCL'’s underlying chunk-based implementa-
tion of collective communication capturing critical factors
such as per-chunk inter-server transmission time. These fac-
tors are profiled offline exhaustively to capture the complex
dynamic optimization by NCCL according to hardware
features and software configurations.

* To account for the interference between overlapping compu-
tation and communication, Echo adopts a black-box method
using features related to both computation and communica-
tion kernels, such as bucket size, SM occupancy, and cache
hit rate.

System architecture. Figure 4 shows Echo’s architecture. Its
input includes three categories: user-defined settings specify-
ing the training framework, parallelism strategies (DP/TP/PP
groups); model details defining the model structure and hy-
perparameters; and hardware configurations detailing device
specifics (GPU type), cluster size, network topology, NCCL
parameters (e.g., NCCL_TOPO_FILE, NCCL_BUFFSIZE),
etc. Given these inputs, the workload tracer extracts training
workloads for each rank, including the per-rank execution
graph and operation running times (§4.1). The CC estimator
module (§5) leverages the white-box models with parameters
corresponding to the given settings to estimate each commu-
nication kernel’s performance. Then the timeline composer
module (§4.2) re-constructs the global timelines of the end-
to-end training process by assembling all per-rank execution
graphs with estimated communication operation performance
and inter-rank dependencies. The validator module (§6) ap-
plies a machine learning model to adjust the running times
of overlapping operations, accounting for the interference-
induced slowdown, and outputs the final training step time
result. Additionally, Echo maintains a database for profiling
data, reducing redundant measurements across simulations.
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4 Workload Tracing

We first present in this section how Echo accurately traces the
training workloads for each rank in an ex-situ fashion using a
single device, thereby addressing Challenge 1 (§2.3). We also
show how Echo composes the global timelines across devices
using the per-rank workloads to faithfully re-construct the
entire training process in §4.2.

4.1 Per-Rank Workload Tracing

To launch a training job, the ML framework registers the
global parallelism parameters (e.g. DP/TP/PP groups) given
by user into the so-called model parallelism unit (MPU),
which maintains all states related to parallelisms for a given
rank. Then according to the MPU, each rank concurrently
initializes its own part of the model that it needs to train for
(Figure 5 (D) ), and starts training with an execution graph that
is optimized for its submodel based on the hardware/software
environment and user configurations.

Echo extracts the per-rank execution graph in an ex-situ
fashion by transforming the above parallel process into a se-
quential one (Figure 5 @) ). Specifically, Echo hijacks all
the calls to the original MPU and re-directs them to its own
MPU, and registers the global parallelism parameters as usual.
Echo’s MPU only manipulates the input arguments to the
MPU when necessary; it does not change the original imple-
mentation to ensure correctness. Then with a single device,
in each iteration i, Echo uses this unique rank ID i to initial-
ize the corresponding submodel and execute one complete
training step, so all information regarding the computation
operations, including their dependencies (including those w.r.t
other ranks) and running times, can be profiled.

The caveat here is collective communication: one device
obviously cannot execute a communication operation. To re-
solve this, notice that when the communication operation is
launched it also needs to call into the MPU which determines
the device’s position in the global communication groups for
proper execution. This is re-directed to Echo’s MPU again
allowing it to trace the communication operation’s truthful
information in the simulated setting (group association, mes-

Operator /£ Name: "wte" Op: “torch.nn.modules.sparse.Embedding :
/i Input_nodes: /“P2P”] Input_type: FP32 Input_shape: [4,512] |
Metadata / E_ Output_nodes: [ “add”] Output_type: FP32 Time: 22.502us -+ :

Rank 0 Timeline

Memcpy T [ Intra-stage dependeney”

—
é‘ Comp. 1 1,] 2250205 ]
7 7
g - Comm. _ P2P(send)y] \ |
(@)
(<)
é_, Memcpy Inter-stage comm. sync.
[
g _ Comp. A [o=
. 7 <
= Comm. _ [P2P (Receive) v |

Execution Graph —
Rank 1 Timeline

Figure 6: Illustration of how Echo schedules operators in the execution graph
to timelines across ranks.

sage sizes, etc.); meanwhile, instead of returning results using
the simulated (distributed) setting, Echo’s MPU returns results
corresponding to single device setting, so the communication
operation can proceed and training is not blocked. This way
Echo traces the actual execution graphs for each rank and
running times of computation operations without requiring
the full-scale cluster. Implementation details of tracing vary
across frameworks which we will discuss in §7.

Note that after per-rank workload tracing, all collective
communication operations on the per-node execution graph
are placeholders without any running time. The job of Echo’s
CC estimator and validator is precisely to estimate and refine
the communication times, respectively, in the next phase.

4.2 Timeline Composing

Before presenting the communication estimation and valida-
tion, we discuss how Echo obtains the end-to-end training
step time by composing the global timeline with the per-rank
workloads obtained above.

Assuming all communication running times are known,
Echo’s timeline composer can recover the training process by
replaying the per-rank execution graphs. Timeline composer
is an event-driven simulator that walks through the per-rank
execution graphs and puts all operations (events) onto the
global timelines accordingly, including the computation time-
line, communication timeline, and memory copy (memcpy)
timeline. As shown in Figure 6, a critical piece of informa-
tion missing from the per-rank graphs is dependencies across
ranks; for instance the downstream stages in rank i requires
activations from the upstream stages in rank i — 1 before start-
ing the forward computation in PP. We provide predefined
dependencies and matching rules for both inter-stage and
intra-stage events for common parallelism strategies, such as
1F1B. To enhance flexibility, this module is exposed as an
API, allowing users to input new dependencies and matching
rules for custom strategies.



1
| Inter-trans
'

i Intra-trans
mmmm e .

I3 L
E[Server 4] E E [Server 5 O-0-0O) ] E
i
Tttt Tt Rank 07

Figure 7: Illustration of ring-based (left) and tree-based (right) communica-
tion execution. In the tree-based communication, black solid arrows denote
the reduce process, while dashed arrows indicate the broadcast process.

5 Communication Estimation

In this section, we outline our approach to simulate the run-
ning time of communication operations. We provide some key
background on NCCL in §5.1 as the basis of our approach.
Then we present our white-box modeling in §5.2 and §5.3
for synchronization and execution time of a communication
kernel, respectively, in addressing Challenge 2 of §2.3.

5.1 Background on NCCL

NCCL provides collective communication (CC) functions,
such as all-reduce, all-gather, and reduce-scatter, to
support various parallelisms in training. These operations
have a variety of implementations optimized for different
algorithms, protocols, etc.

In NCCL, P2P primitives and CC functions are imple-
mented within a single CUDA kernel [9]. Thus, our modeling
and prediction here is done directly at the kernel level. The
kernel-level results are used as the corresponding operation’s
performance. This results in inaccuracies since the launching
overhead of the operation is not considered, which however
is very small. The same applies to the slowdown prediction
in §6.

Each message is divided into equal-sized chunks that are
pipelined for efficient synchronization and transfer. This is
the basis of our modeling in §5.3.

NCCL supports two common algorithms for all-reduce:
ring-based [9] and tree-based [3]. Figure 7 illustrates how
they work. Other CC kernels use ring-based algorithm only.

5.2 White-Box Modeling: Synchronization

Echo models a NCCL kernel as two sequential stages: syn-
chronization and execution. Upon invocation, the kernel first
checks whether it can start execution based on the readiness
of ranks in the current communication group. If not all ranks
are ready, the kernel waits for synchronization before it can
proceed. Thus, the total running time of a kernel is the sum of
synchronization time and execution time. Here we investigate
the synchronization time first.

Echo models synchronization time after NCCL’s imple-
mentation logic. For P2P send and receive, it waits until
its target communicator (i.e., each rank’s communicator in-
stance) is ready to proceed. In contrast, for CC kernels, the
communicator associated with each rank in the current group

must wait until all communicators have been successfully
launched. The last communicator to initiate determines the
actual start time of this kernel.

5.3 White-Box Modeling: Execution

Execution time represents the majority of kernel running time,
and is the focus of our modeling. We build white-box models
to closely model the kernel execution process in NCCL with
different algorithms, and profile all the key parameters of the
models exhaustively in various hardware/software settings to
achieve accurate prediction without high overheads of event-
based simulation.

Basic model. Based on NCCL’s GPU-side implementa-
tion, the execution time of a CC kernel can in general be
broken down into four non-overlapping components, using
all-reduce as the example:

Tcommﬁkemel :Tconn_xetup + Tintra_truns ( 1 )

+ Tdata_reduction + T;'nterftransv

where Teonn_serup 18 the connection setup time; Tinrq_rans and
Tinter_trans are times to transmit the tensor chunks in the spe-
cific algorithm, Ty4tq_reduction 15 the computation time of the
reduce operation over the received tensor chunks with the
local tensor. Not all components are present in other CC ker-
nels.

Based on Equation (1), we can formulate the following for
all CC kernels with different algorithms:

Ri
Tl gatner = AFY NN = 1), )
Ri
Trecliliie—scatter =0+ [(N - 1) +YX (N_ l)}
+ 8 X tensor_size, 3)
Ri
Tall”igreduce = OC—l—T] [(N - 1) +Y X 2(N - 1)]
+ 8 x tensor_size, “)

Ta?lriereduce = 0‘+'Y(n - 1) + ZB<K_ 1)
+2ylog, (M) + & x tensor_size.  (5)

Here N is the total number of devices, M number of nodes
(servers), and K = N/M number of devices per node. We
denote the connection setup time as o, intra-server and inter-
server transmission times as § and . The reduce time depends
on tensor_size, and the reduce throughput 8. Finally, 1 is the
number of rounds or number of chunks for this tensor, which
corresponds to NCCL’s chunk-based implementation.

Offline exhaustive profiling. The modeling above is explic-
itly related to nine parameters and implicitly related to an
additional parameter, chunk_size. Among them, N, M, K and
tensor_size are user configurations while o, B,, 8, 1 are what
Echo attempts to obtain. However, modeling them explicitly
is challenging. First, they obviously depend on chunk_size
and tensor_size. The chunk size is not a predefined constant
but dynamically tuned by NCCL [9]. Further, they also vary



Type  Feature Specification

Protocol Communication protocol used within NCCL
Algorithm Communication topology algorithm applied in NCCL
Comm. Collective Name of the collective function in the kernel
details  Bucket size Size of the tensor bucket used in collective communication
Channel number Number of communication channels in NCCL

Running time Running time profiled on single-device training
Compute throughput ~ Average SM throughput
Memory throughput  Percentage of cycles where DRAM was active

Comp. 1y AM throughput  Peak DRAM throughput
Kernel . .
. Achieved occupancy  Average percentage of active warps on each SM
Metric . X -
L1 hit rate Hit rate for L1 cache
L2 hit rate Hit rate for L2 cache

Table 4: Features in Echo’s prediction model for predicting interference.

with hardware configuration and software implementation
(e.g. IB vs NVLink, NCCL version). These idiosyncrasies
also vary across different CCLs, making it even more difficult
to have a general model.

We adopt offline profiling instead to obtain the values of
these parameters, since they are fixed when all the hardware/-
software configurations are settled. First, we modify NCCL to
be able to obtain the chunk size during the initialization phase.
We enumerate all possible combinations of N, M, tensor_size,
and hardware type (IB, TCP, NVLink) to record the corre-
sponding chunk_size and number of rounds 1 computed by
NCCL. Then for each chunk_size, we profile the correspond-
ing connection setup time, intra-server and inter-server trans-
mission time, and reduce throughput (o, B, Y, ) under the cor-
responding setting. This does require access to a cluster as the
network bandwidth may vary depending on the scale (2-node
vs 4-node vs 8-node), but for common Clos-based cluster
topologies they remain stable after reaching a small scale due
to the symmetry and limited number of tiers.

Taken together, our approach of combining white-box mod-
eling with offline profiled parameters provides a good first-
order estimation of CC kernel performance with very low
overheads. Our approach can be enhanced in several ways,
which we discuss in §9.

6 Overlapping-Induced Slowdown Prediction

Accurately capturing and modeling the resource contention
between overlapping kernels presents substantial challenges
in predicting the slowdown factor as discussed in §2.3. To
address this, Echo introduces an ML-based slowdown predic-
tion model with a number of hardware- and software-specific
features, which we present here.

A GPU devices executes concurrent computation and com-
munication kernels with spatial multitasking, where each ker-
nel is assigned to separate streams with a subset of the SMs.
At the same time they also contend for shared resources such
as cache and DRAM bandwidth. These factors results in per-
formance interference, and Echo needs to capture them in
predicting the slowdown.

Feature extraction. Table 4 summarizes the key features
used by our model. We categorize features into two groups:

communication-related details and computation kernel met-
rics. For communication, we consider features such as proto-
col and algorithm employed by NCCL, CC kernel type, bucket
size, and channel configuration. These parameters capture the
complexity and overheads of communication: bucket size,
for instance, determines when a communication kernel will
be launched after accumulating one bucket of data. On the
computation side, we profile kernels at a fine-grained level on
a single device to measure their baseline performance with-
out overlapping. We collect running times, compute through-
put, memory utilization, and cache statistics using NVIDIA
Nisight Systems and Nsight Compute. For instance, achieved
occupancy and SM activity levels indicate compute intensity,
while DRAM utilization and memory throughput—along with
L1/L2 hit rates—shed light on memory access latency and
potential bottlenecks. Additionally, we classify kernels by
their functional types (e.g., matrix multiplication, layer nor-
malization) to further refine our predictions.
XGBoost-based model. We leverage XGBoost [2], a tree-
based gradient boosting framework, to predict the slowdown
factors caused by overlapping kernels with the above fea-
tures. XGBoost is well-suited to this task for two key reasons.
First, our dataset contains heterogeneous features that are
both numerical (e.g., SM throughput, DRAM utilization) and
categorical (e.g., GPU type, kernel type), a scenario where
tree-based models excel. Second, our target slowdown fac-
tors, influenced by the interplay of diverse system conditions,
remain bounded within a range well-captured by the train-
ing set. As we expand our dataset—incorporating additional
profiles from various models, GPU architectures, and cluster
scales—the model’s generalization ability improves, enabling
accurate slowdown predictions across increasingly complex
and heterogeneous environments.

7 Implementation

We implement Echo as illustrated in Figure 4. Echo is devel-
oped based on PyTorch 2.1, DeepSpeed 0.13.1, and Megatron-
LM (commit ID: 53a350ed), and NCCL 2.22.3, compris-
ing ~10K lines of code (LoC). ~2K LoC are dedicated to
Megatron-LM, 3K LoC to DeepSpeed and PyTorch, and the
remaining SK LoC for common core modules that underpin
the simulation engine, training workload tracing, overlapping
induced slowdown dataset collection, and CC parameter ex-
haustive profiling.

Workload tracer. We implement two tracing modules to sup-
port execution graph extraction for Huggingface models used
by PyTorch and DeepSpeed and Megatron-LM models. For
the former, the tracer leverages torch.fx to record opera-
tions. Since torch. fx only captures computation operation
during the forward pass, we enhance it to capture operations
during backward passes by using tensor gradient functions
and registering hooks, as well as optimizer steps and commu-
nication operations (handled as placeholders). For Megatron-
LM models, a custom tracing module is developed with a



Hyperparameter Value
Model XGBRegressor
Objective reg:squarederror
Max depth 12
Random state 42
Train/Test Ratio 0.8/0.2
K-fold cross-validation 5-fold

Table 5: The hyperparameters of XGBoost model.

series of Python decorators and context managers. Echo di-
rects the handling of custom operations in Megatron-LM to a
general template, ensuring that the related function calls are
recorded. Finally, the generated execution graph is output as
a JSON file and stored in a database for future use. Notably,
users can activate Echo’s workload tracer by adding a few
extra lines of in their existing training scripts.

CC estimator. To profile the key parameters for models in
§5.2, we utilize the NCCL profiling tool NPKit [7]. Given that
the network topology can impact bandwidth, we empirically
profile these parameters for settings up to 4 nodes (32 GPUs)
in our clusters, beyond which the effective per-node network
bandwidth does not change (and thus these parameters).
Validator/Slowdown predictor. We experimentally find the
best hyperparameters for our XGBoost model as shown in
Table 5. We implement an automated pipeline to construct
the training dataset. NVIDIA Nsight Compute is used to pro-
file GPU resource metrics such as SM throughput, memory
bandwidth, and cache hit rates. Nsight Systems capture ker-
nel execution traces under overlapping and non-overlapping
conditions, exporting the data as SQLite databases.

8 Evaluation

This section evaluates Echo on vision and language models
using two clusters up to 96 GPUs. We describe the exper-
imental setup in §8.1, then assess Echo’s computation and
communication simulation accuracy against baselines in §3.2
and §8.3, respectively. We present Echo’s kernel overlap slow-
down prediction results in §8.4. Finally, we demonstrate its
end-to-end simulation accuracy and time cost in §8.5.

8.1 Experiment Setup

Models. We evaluate Echo using two representative models:
the VGG19 [39] image classification model and GPT-series
language models [38]. For GPT-series, we consider a broad
range of model sizes (from 13B to 175B parameters; see ap-
pendix §B for details) to thoroughly assess the simulator’s
accuracy. To avoid precision-related discrepancies with the
baselines, we use FP32 during evaluation. For ground-truth
measurements, we train the models on real GPU clusters us-
ing mainstream frameworks (PyTorch, DeepSpeed, Megatron-
LM) with CUDA 12.1 aligned with the implementations in
§7. For each measurement, we start profiling from the 5th
training step, warm up for two steps, and then collect running
times for the next five steps. We report the average of these
five steps as the ground truth.
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Figure 8: Computation times of various workloads on A800 and H800 clus-
ters under different parallelization settings. Red crosses indicate configu-
rations that Proteus and FlexFlow cannot support PP=4 for VGG19, while
black squares mark configurations that encounter OOM errors at runtime.

Clusters. To assess Echo under various hardware and topo-
logical conditions, we conduct experiments on two real-
world GPU clusters. The first is a large-scale cluster with
96 NVIDIA H800 GPUs (80GB each) distributed across 12
servers, where each server hosts 8 NVLink-connected GPUs
(400 GB/s). Inter-server communication is provided by 400
Gb/s NDR IB per GPU. Each server is equipped with dual
56-core Intel Xeon Scalable processors and PCle Gen5. The
second is a single-server cluster with § NVIDIA A800 GPUs
connected via 400 GB/s NVLink. Additionally, we include an
RTX 3090 cluster in the kernel slowdown experiment (§8.4)
to further diversify our hardware evaluation. Appendix §A
provides additional observations and evaluations on a 256-
GPU A100 cluster.

Baselines. We compare Echo with two fully open-source
simulators:

e Proteus [15]: A SOTA simulator that, like Echo, provides
integrated simulation for parallel strategies and runtime
behaviors.

* FlexFlow [22]: An automated parallelization framework
with an internal simulator for throughput estimation across
different parallelization strategies.

Other simulators such as ASTRA-sim [44] and SImAI [11] are
also open source, but they have critical limitations. ASTRA-
sim only supports matrix multiplication kernels; and SimAI’s
current open-source version (commit ID:44a468c¢ as of Dec.
2024) [10] does not support pipeline parallelism.

8.2 Computation Simulation Performance

We first evaluate Echo’s accuracy in simulating computation
workloads on both H800 and A800 clusters, using VGG19
(with DeepSpeed) and GPT-13B (with Megatron-LM) un-
der various PP configurations. Each configuration assigns a
distinct submodel to an individual GPU.

Simulation accuracy. Echo reconstructs the computation
workload by tracing all computational operations and repro-
ducing their execution sequence based on the execution graph.
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Figure 9: Running time and prediction error for intra-server CC kernels on
H800 and A800 GPUs across varying tensor sizes. Each subplot is normalized
relative to the operation with the longest running time.
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Figure 10: Running time and prediction error for inter-server CC kernels on
H800 GPUs across varying tensor sizes and cluster scales. Each subplot is
normalized relative to the operation with the longest running time.

Per-GPU operation running times are derived through Echo’s
workload tracer without requiring a full-scale deployment. As
shown in Figure 8, Echo achieves a maximum overall error
of only 8.31%. In contrast, while Proteus and FlexFlow main-
tain relatively low error rates for VGG19 under DeepSpeed
(8.6% and 17.81%, respectively), their errors escalate dramat-
ically for GPT-13B under Megatron-LM, reaching 91.53%
and 109.14%, respectively. The root cause of this discrep-
ancy is that Proteus and FlexFlow rely heavily on standard
PyTorch operations, failing to incorporate the custom fused
operations that frameworks like Megatron-LM employ for
performance optimization. Such specialized operations can-
not be accurately modeled without extracting their runtime
characteristics directly from the target training framework.
By doing precisely this, Echo captures the actual operation
behaviors and achieves substantially higher accuracy.

Echo also supports a wide range of 3D parallelism con-
figurations. In contrast, Proteus and FlexFlow struggle with
certain settings. For example, they cannot simulate VGG19
at PP=4 due to the need for manual workload construction.
Finally, Echo is GPU memory-aware during workload ex-
traction, it detects Out-of-Memory (OOM) conditions and
provides immediate feedback. Neither Proteus nor FlexFlow
anticipates OOM errors (e.g., GPT-13B at PP=2), denying
users critical insights into the feasibility of configurations.
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Tensor size (MB) 4 8 16 32 64 128 256
Chunk size (103 bytes) 18 36 72 72 72 144 288
Intra-server 5743 6436 73.62 746l 7746 7555  99.23
Round trip (us)

Inter-server

Round trip (1) 543 7232 10673 1129 11125 1742 278.98
Reduce operation (us)  50.14  65.86 102.46 219.89 463.43 841.71 1657.72

Table 6: The breakdown of Echo’s al1l-reduce running time, profiled in the
HS800 cluster using 32 GPUs.

8.3 Communication Simulation Performance

We now evaluate the effectiveness of Echo’s communication
simulation, comparing it against NCCL-Predictor [9], the un-
derlying communication model used by both Proteus and
FlexFlow. NCCL-Predictor leverages parameters tuned from
production experience and employs an o — [ model (§2.3).
Simulation accuracy. Figures 9 and 10 illustrate the predic-
tion accuracy for intra- and inter-server collective communica-
tion under varying message sizes (4MB to 256MB) and clus-
ter scales. Across most cases, Echo consistently outperforms
NCCL-Predictor. In the intra-server setting, Echo achieves an
average prediction error of 8.43% and 7.24% on A800 and
HS800 clusters, respectively, compared to 26.75% and 28.33%
for NCCL-Predictor. In the inter-server scenario, Echo’s av-
erage prediction errors are 11.36%, 12.59%, and 13.75% for
2-, 4-, and 8-server H800 clusters, respectively, outperform-
ing NCCL-Predictor by a margin of 34.4%, 29.56%, and
19.39%. The smallest prediction gap emerges in ring-based
all-reduce, where Echo is only 4.2% more accurate than
NCCL-Predictor. By contrast, for other communication pat-
terns, especially tree-based all-reduce, Echo demonstrates
a more pronounced accuracy advantage, reducing average
prediction errors by up to 33.5%.

These differences can be attributed to NCCL'’s specialized
optimizations for the widely used ring-based all-reduce,
which align more closely with the assumptions of the o — 3
model. However, NCCL-Predictor’s simplifications become
problematic for less commonly optimized patterns and smaller
message sizes, leading to significant discrepancies. In particu-
lar, NCCL-Predictor exhibits an average error rate of 27.6%
for 4MB and 16MB messages. By contrast, Echo’s profiling-
based white-box approach more accurately captures practical
bandwidth utilization and overheads, ensuring consistent ac-
curacy across both small and large message sizes. Notably,
Echo’s white-box communication prediction model signifi-
cantly accelerates simulation speed, as discussed in §8.5.
Breakdown analysis. Table 6 provides a detailed breakdown
of the all-reduce kernel runtime in a 32-GPU HS800 cluster,
including intra-server and inter-server round-trip times and
reduce operation computation times for various tensor sizes.
Intra-server round-trip times scale with tensor size, increas-
ing from 57.43 ps for 4MB tensors to 99.23 us for 256MB
tensors, reflecting overheads such as scheduling more thread
blocks for larger chunks. Similarly, inter-server round-trip



Solution GPU Type 5% Error  10% Error  15% Error RMSE
Echo (ours) 3090 61.48% 73.62% 76.52% 1.0935
Proteus 8.52% 13.62% 19.28% 1.4953
Echo (ours) AR00 61.03% 51.59% 75.01% 0.7147
Proteus 59.04% 65.45% 70.51% 1.5170
Echo (ours) HS00 43.18% 51.59% 57.73% 0.5626
Proteus 34.78% 37.36% 40.18% 1.5493

Table 7: The prediction error for interference between concurrent kernels.

times grow with tensor size, reaching 278.98 us at 256MB.
The computation time for the reduce operation also scales
nearly linearly with tensor size, increasing from 50.14 us at
4MB to 1657.72 ps at 256MB. These trends highlight how
Echo’s detailed modeling captures realistic overheads across
varying message sizes and communication settings.

8.4 Slowdown Prediction

Kernel overlap slowdown phenomenon has been overlooked
by most existing simulation work. Therefore, we mainly com-
pare Echo with Proteus, the only work we know that considers
which simply uses a heuristic factor that varies only with GPU
architecture and ML model to obtain the slowdown.

Prediction accuracy. We evaluate slowdown prediction accu-
racy using a test dataset comprising approximately 5,000 ker-
nels collected from various models. Table 7 compares the in-
terference prediction accuracy of Echo and Proteus across dif-
ferent GPU types. Echo consistently achieves higher percent-
ages of predictions within 5%, 10%, and 15% error margins
for the 3090 and H800 GPUs. Specifically, on the 3090 GPU,
Echo attains 61.48%, 73.62%, and 76.52% within 5%, 10%,
and 15% error respectively, significantly outperforming Pro-
teus’ 8.52%, 13.62%, and 19.28%. On the H800 GPU, Echo
achieves 43.18%, 51.59%, and 57.73%, compared to Proteus’
34.78%, 37.36%, and 40.18%. For the A800 GPU, Echo
demonstrates competitive performance, achieving 61.03%
within 5% error, closely matching Proteus’ 59.04%, while
also surpassing in the 15% error margin (75.01% vs. 70.51%).
Additionally, Echo exhibits lower Root Mean Square Error
(RMSE) values across all GPU types, with 1.0935, 0.7147,
and 0.5626 for 3090, A800, and H800 respectively, compared
to Proteus’ 1.4953, 1.5170, and 1.5493. These results demon-
strate that Echo provides more accurate slowdown predictions
overall compared to the existing approach.

Model-wise evaluation. We further assess the benefits of
accurate slowdown prediction on model training simula-
tions. Utilizing the advanced Fully Sharded Data Parallel
(FSDP) [48] training mode from PyTorch, which incorpo-
rates computation-communication overlapping optimizations,
we compare the overall computation time against ground
truth and a baseline across different GPU architectures. As
depicted in Figure 11, Echo achieves an average slowdown
prediction error rate of 4.67%, significantly outperforming
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Figure 11: The comparison of model-wise computation running time on
different GPUs (H800, A800, RTX3090) in PyTorch FSDP mode for VGG19
and GPT-2 models. Note that all the running times are normalized against
the ground truth, represented by the gray line (y=1.0).
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Figure 12: The normalized feature importance of XGBoost across different
GPU architectures, highlighting key computational resources.

Proteus, which has an error rate of 18.83%. Notably, on the
RTX3090 GPU, Echo maintains superior prediction accuracy,
with its error rate being 8x lower than that of Proteus.

Feature score analysis. We further analyze the interpretabil-
ity of Echo’s XGBoost-based slowdown prediction model,
analyzing feature importance across different GPU architec-
tures. As illustrated in Figure 12, the features are ranked in
ascending order based on their normalized importance. For
the RTX 3090, memory throughput emerges as the domi-
nant feature, reflecting its bandwidth limitations due to the
GDDR6 memory subsystem. The RTX 3090 has lower mem-
ory bandwidth compared to data-center GPUs, making it more
prone to contention during overlapping kernels. This high-
lights the model’s ability to identify memory throughput as
the primary bottleneck. On the A800, L2 cache hit rate and
memory throughput are the most significant features, align-
ing with its optimized cache hierarchy. The A800’s larger
and more efficient L2 cache reduces DRAM latency, and the
model’s emphasis on cache-related metrics underscores the
importance of effective cache utilization during kernel overlap
scenarios. For the H800, the achieved SM occupancy and com-
pute throughput score highest, while memory-related features
are comparatively less significant. This reflects the Hopper
architecture’s focus on computational performance, including
advanced SM partitioning for concurrent kernel execution.
The lower relevance of memory-related features suggests that
HS800 is less constrained by memory bottlenecks, with perfor-
mance under interference primarily driven by computational
resource allocation and utilization.
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8.5 End-to-End Results

Simulation accuracy. We now evaluate the overall end-to-
end simulation accuracy of Echo on H800 clusters of varying
scales (with Megatron-LM). Figure 13 compares Echo against
baselines using GPT models of different sizes under diverse
3D parallelism configurations (PP x TP x DP).

Across all evaluated scenarios, Echo consistently aligns
closely with real-world iteration times, substantially outper-
forming the baselines. For instance, on a 96-GPU H800
cluster, Echo’s error for GPT-70B (12x4x2) and GPT-175B
(12x8x1) is only 7% and 8%, respectively. In contrast, Pro-
teus and FlexFlow exhibit higher deviations, with errors reach-
ing up to 23% and 25% for Proteus, and 23% and 37% for
FlexFlow on the same configurations. On a 64-GPU clus-
ter, Echo achieves a 9% error for GPT-13B (8x4x2), again
surpassing both baselines. Critically, Echo maintains an end-
to-end error below 8.6% even at larger scales. This high fi-
delity is attributed to Echo’s accurate workload capture and
communication modeling, including kernel overlap slowdown
predictions. In contrast, the baselines rely on rigid assump-
tions and fail to incorporate framework-specific operation and
communication optimizations, resulting in larger discrepan-
cies in their predictions.

Simulation time cost. Echo incurs two primary types of time
costs: (a) initialization time, which involves loading training
workload trace files, initializing a series of variables, and en-
queueing them into a waiting queue; and (b) execution time,
which entails replaying the simulation by dequeuing opera-
tions into timelines. Since the running time of computation op-
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4GPUs VGG19 GPT 13B~175B

Init. Execution Total Init. Execution Total

16 0.3 9.5 9.8 0.3 4.1 4.4

64 04 10.3 10.6 2.3 40.1 424

128 0.3 10.0 10.3 43 79.0 83.4
256 0.4 10.3 10.7 8.4 159.2 167.6
1024 0.3 9.7 10.0 35.9 682.8 718.7
4096 04 10.2 10.6  149.9 3307.8 3457.7
8192 0.3 10.3 10.5 3747 4602.2 4976.9

Table 8: The simulation time costs of Echo in seconds. VGG19 is trained
using the DDP mode, while GPT models (ranging from 13B to 175B) are
trained using 3D parallelism.

erations and workloads can be profiled and pre-traced and pre-
traced for extended reuse, our evaluation focuses exclusively
on simulation cost. We assess two training modes—PyTorch’s
DDP and Megatron-LM’s 3D parallelism—and report their
corresponding average time costs in Table 8. In DDP mode,
Echo creates a single copy of workloads for each DP group,
resulting in stable and rapid average simulation times (av-
eraging 10.3 seconds). In 3D parallelism mode, leveraging
an effective white-box modeling approach for communica-
tion operations, Echo achieves a 91.8x speedup compared to
advanced simulators like SimAI on a 128-GPU setup (83s
vs 7655s). Additionally, simulating an 8,192-GPU cluster
requires only 1.38 hours with Echo.

9 Limitations and Discussions

Echo has limitations and we wish to improve it in at least the
following directions.

Communication prediction. We plan to investigate learning
based solutions like m3 [28], which efficiently predicts flow-
level performance estimation while capturing network-centric
factors such as transport protocols. We also wish to extend
our modeling to explicitly consider network topology and the
potential bandwidth contention, which is currently missing.
Parallelism. Echo does not yet support expert parallelism
for MoE, sequence/context parallelism, and memory-efficient
ZeRO. We plan to integrate them in subsequent releases.

10 Related Work

We discuss related work other than those covered in §2.
GPU simulation. GPU computation simulators like SCALE-
sim [37] and Accel-Sim [27] focus on instruction-level mod-
eling, while other approaches [19,30,31,49] rely on profiling
or tracing to capture accurate operator execution times. Echo
similarly adopts a trace-based methodology, but crucially does
so without requiring a full-scale deployment.
Communication simulation. Discrete event simulators like
ns-3 [36] and OMNeT++ [41] are well-known to have high
overheads due to their packet-level whole-stack simulation.
Other than parallelization optimizations [12, 17], recently
learning based approach to predict packet-level or flow-level
performance without simulating the whole stack [28,45,47]



has shown promising results. As mentioned before, integrat-
ing them with Echo for training simulation is a promising
direction for future work.

11 Conclusion

We presented Echo, a high-fidelity simulator for large-scale
distributed ML training that bridges critical gaps in existing
approaches. Echo simulates without full-scale deployment
with ex-situ workload tracing, estimates CC performance via
white-box modeling, and accounts for the slowdown caused
by kernels overlapping. Our evaluation shows that Echo not
only achieves up to 3x lower simulation error than state-of-
the-art baselines but also is highly efficient and practical. We
plan to open source Echo to the community.
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A Additional Observations

We present additional observations on distributed model train-
ing in 256-GPU A100 clusters. These cluster consist of up
to 256 GPUs (32 servers), with each server equipped with 8
Ampere A100 40GB Tensor Core GPUs. The intra-server con-
nections utilize NVLink, providing 600 GBps of bandwidth,
while the inter-server network offers each GPU a dedicated
200 Gb/s InfiniBand connection.

A.1 Training Efficiency Gap

Training time cannot be easily predict. Numerous approaches
have been proposed to accelerate training, with practitioners
aiming for linear speedup as more devices are added. How-
ever, frequent inter-device communication makes achieving
this efficiency challenging, as highlighted by extensive re-
search and our own empirical observations. Figure 14 illus-
trates the performance of three classic DNN models across
different cluster sizes and network bandwidths. As cluster size
increases, the step time deviates from the expected speedup,
with a maximum degradation of 33.1% (Figure 14a). Fur-
thermore, scaling communication time linearly with network
bandwidth fails to predict the actual step time (Figure 14b).

A.2 Communication Analysis

Theoretical model analysis. We empirically show the run-
ning time gap between the theoretical transmission delay
and the true running time of the all-reduce kernel. We use
NCCL-test to launch all-reduce kernels and profile the end-
to-end running time. Figure 15a depicts the performance in
different cluster size. The value of tensor_size/bandwidth
is a constant while the running time of all-reduce gradually
grows with the cluster size. In a cluster with 256 GPUs, the
performance gap is up to 251%. Then, we consider another
possible solution, Trans + Prop in Figure 15a. It incorporates
theoretical propagation delay (distance/ propagation_speed)
because servers propagate reduced tensor to others in the all-
reduce kernel. However, it cannot simulate correctly either.

NCCL breakdown analysis. We thus perform a breakdown
analysis of the all-reduce running time in Figure 15b. A com-
plete all-reduce kernel involves (a) initiating the connection,
(b) transmitting and propagating the message among servers
and (c) averaging the results. Empirically, we find that the
running time of all-reduce kernel is indeed a combination of
the transfer time, data reduction time and overhead of connec-
tion setup. Here, the transfer time is measured to be the time
elapsed between the start of the transmission on the sender
and the end of receiving the tensor on the receiver. We no-
tice that an average cost of 352.5 us is spent on connection
setup. Both propagation and computation time for reducing
the tensor are non-trivial and gradually increase as the cluster
scales up. Apart from the significant contribution of reduce
computation, the profiled transfer time is larger than the sum
of the theoretical transmission delay and propagation delay.
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Figure 14: Step time change of three DNN models profiled on A100 cluster.
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we linearly scale all the communication time and compute the theoretical
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Figure 15: Running time of NCCL All-Reduce with varying GPU counts,
profiled on A100 clusters. We use NCCL-test to launch all-reduce kernels
and profile the end-to-end running time.

B Model Configurations

The GPT model specifications are summarized in Table 9.

C CDFs of Slowdown Predictions

Figure 17 compares the cumulative distribution functions
(CDFs) of kernel slowdown prediction error rate predictions
made by Echo and the baseline method, Proteus. The compar-
ison is shown for two hardware setups: an RTX 3090 GPU
and an H800 cluster. Echo demonstrates a significantly lower
kernel error rate across both platforms, with a sharper CDF
slope and lower mean error rate compared to the baseline.

D End-to-End Simulation

We evaluate the accuracy of Echo in different training configu-
rations under PyTorch’s DDP mode. We adjust the cluster size
and network bandwidth. Figure 16 shows the performance of
the baseline and Echo compared with the profiled ones. The
average prediction accuracy is 97.25%. For language models,
the error rate is reduced by at least 2.02x. We find that the
Baseline solution performs better in CNN models. We also
evaluate Echo by replacing the InfiniBand network with a
100GB/s PCle interconnection so that it takes a long time to

Model #Params #Heads #Layers #Hidden Size #Sequence Length
GPT 13B 32 40 5120 2048
GPT 30B 48 40 7680 2048
GPT 40B 72 40 9216 2048
GPT 70B 64 80 8192 2048
GPT 175B 96 96 12288 2048

Table 9: Model configurations for GPT series.
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Table 10: Prediction error rate of Echo in the cluster with 128 A100 GPUs.
We change the network interconnection from 1.6Tb/s InfiniBand to 100 Gb/s

PCle.

transmit model gradients (Table 10). The average accuracy is
96.17%. Degradation in the accuracy mainly stems from the
error in predicting the slowdown factor.
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