
PIMCloud: QoS-Aware Resource Management of
Latency-Critical Applications in Clouds with

Processing-in-Memory
Shuang Chen, Yi Jiang, Christina Delimitrou, José F. Martı́nez

Computer Systems Laboratory
Cornell University
Ithaca, NY, USA

{sc2682,yj389,delimitrou,martinez}@cornell.edu

Abstract— The slowdown of Moore’s Law, combined with
advances in 3D stacking of logic and memory, have pushed
architects to revisit the concept of processing-in-memory (PIM)
to overcome the memory wall bottleneck. This PIM renaissance
finds itself in a very different computing landscape from the
one twenty years ago, as more and more computation shifts
to the cloud. Most PIM architecture papers still focus on best-
effort applications, while PIM’s impact on latency-critical cloud
applications is not well understood.

This paper explores how datacenters can exploit PIM ar-
chitectures in the context of latency-critical applications. We
adopt a general-purpose cloud server with HBM-based, 3D-
stacked logic+memory modules, and study the impact of PIM
on six diverse interactive cloud applications. We reveal the
previously neglected opportunity that PIM presents to these
services, and show the importance of properly managing PIM-
related resources to meet the QoS targets of interactive services
and maximize resource efficiency. Then, we present PIMCloud,
a QoS-aware resource manager designed for cloud systems with
PIM allowing colocation of multiple latency-critical and best-
effort applications. We show that PIMCloud efficiently manages
PIM resources: it (1) improves effective machine utilization by
up to 70% and 85% (average 24% and 33%) under 2-app and
3-app mixes, compared to the best state-of-the-art manager; (2)
helps latency-critical applications meet QoS; and (3) adapts to
varying load patterns.

I. INTRODUCTION

The slowdown of Moore’s Law demands novel architectures
to push performance, such as 3D stacking [4, 5] which has
revitalized the concept of processing-in-memory (PIM) as a
means to tackle the von Neumann bottleneck, resulting in
a wide range of recent PIM architecture proposals [9, 11,
12, 13, 17, 23, 33, 35, 37, 38, 45, 47, 53, 61], along with
a major DARPA/SRC research center for building a PIM
ecosystem [66].

At the same time, cloud computing is becoming ubiqui-
tous, offering resource flexibility and cost efficiency [15]. An
increasing amount of computing now takes place in large-
scale datacenters [15, 42, 62]. These two trends point to
a near future where datacenter nodes will incorporate PIM
capabilities, which makes it imperative to examine PIM’s role
in cloud servers. However, in order for datacenter nodes to

leverage PIM in a way that benefits application performance,
there are a number of challenges that remain unsolved.

First, the diversity of cloud applications is rapidly increas-
ing [42], making it impractical to have one specialized PIM
architecture tailored to each workload type [9, 13, 23, 37]. For
a PIM architecture to be practical enough to be deployed at
scale, it should be able to handle general-purpose computation
of cloud services. Therefore, in line with recent proposals for
general-purpose PIM architectures [17, 34, 46, 49, 70], we
target datacenter nodes embedded with multiple low-latency
3D memory+logic stacks, a number of low-power general-
purpose cores embedded in the logic layer of each stack, and
a memory abstraction shared with the main CPU.

Second, current PIM research typically targets memory-
intensive workloads, where the high memory bandwidth of
PIM helps improve performance for throughput-bound, best-
effort (BE) jobs [35, 45, 51, 52, 53, 61]. However, datacen-
ters host a different type of applications where latency, not
throughput, is the primary performance metric [22, 41, 44].
These latency-critical (LC) services, like websearch and key-
value stores, are not necessarily memory bandwidth-intensive,
but they require low memory latency. Latency is also be-
coming more important as a metric due to the increasing
prevalence of microservices [32, 50, 68], which impose strict,
often microsecond-level, quality-of-service (QoS) constraints
in terms of tail latency [27]. Thus, for PIM to gain wide
adoption in the cloud, it is important to quantify its impact
on such latency-critical applications.

In this paper, we perform a comprehensive study of PIM
on LC applications, and quantify the impact of PIM’s reduced
memory latency, shallow memory hierarchy, and simple core
architecture. We observe that many LC services favor PIM,
compared to an iso-silicon architecture with brawny cores, a
deep memory hierarchy, and higher memory latency.

Finally, given the opportunity of PIM to LC applications, it
is also important to design resource management techniques
that are aware of a system’s PIM capabilities, and can allocate
the right resources to each LC application. This is especially
critical under colocation, where cloud operators often co-
schedule multiple LC/BE applications on the same physical

server, to improve resource and cost efficiency [19, 20, 21, 51,
52, 54, 55, 59, 69, 74]. Without proper resource management
to eliminate contention, LC applications can experience QoS
violations.

To address these challenges, we design PIMCloud, a PIM-
aware and QoS-aware resource manager for LC applications
in PIM-enabled systems. PIMCloud leverages the varying
degree of benefits that PIM brings to different LC applications,
and assigns the most suitable resources to each colocated
application. To this end, it manages PIM-introduced resources
including heterogeneous cores and data placement. PIMCloud
additionally adjusts resource allocations dynamically, to cope
with the varying load patterns of LC applications.

PIMCloud identifies the opportunity that PIM presents for
latency-critical applications, and manages PIM resources to
maximize their benefit for this emerging type of cloud services.
We evaluate PIMCloud using a cycle-level multicore simula-
tor [63] under various scenarios. Evaluation results show that
PIMCloud effectively manages PIM-related resources while
meeting QoS, and improves effective machine utilization by
up to 70% and 85% (average 24% and 33%) under 2-app and
3-app mixes, compared to the best state-of-the-art manager.

II. RELATED WORK

Prior PIM proposals target throughput-oriented applica-
tions, including data analytics [34], graph processing [10],
MapReduce[61], bulk bitwise operations in databases [64], and
machine learning [17, 23, 46, 49]. PIMCloud instead explores,
for the first time, the role of PIM for LC applications.

A. Resource Management in PIM-enabled Systems

Integrating PIM in conventional CPU-based systems com-
plicates resource management. Liu et al. [49] adopt a system
for neural network (NN) training with conventional CPUs,
general-purpose, and specialized PIM cores. They profile the
memory:compute ratio of each NN operator, and schedule
them to different resources to improve system utilization. Tsai
et al. propose AMS [70], a dynamic thread scheduler for
systems with a host CPU and general-purpose PIM stacks. The
scheduler leverages cache monitoring to estimate the utility of
PIM over CPU, and schedules threads one at a time to their
preferred resource to improve overall weighted speedup [67].
All these systems are designed to improve overall system
throughput. We show in this paper that LC applications present
different challenges for PIM when the optimization goal is not
simply throughput, and a redesign of the resource manager is
required to meet LC applications’ strict latency constraints.

B. Resource Management for LC Applications

There has been abundant work on resource management of
LC applications in conventional multicores. Most restricts a
single LC application per node, while more recent work allows
colocation of multiple LC applications [21, 55, 59]. Compared
to conventional architectures, PIM introduces both core and
memory heterogeneity which requires careful management.

PIM	Stack

PIM	Stack

…

…

Shared	L3	$

L2	$

L1	$

L2	$

L1	$

L2	$

L1	$

L1	$ L1	$ L1	$

P

Memory	layers

P P

V V V

Logic	layer

DRAM C C C

Main	CPU

L1	$P VCPIM	core CPU	core L1	cache Vault	
controller

SerDes
link

Fig. 1: Envisioned PIM-enabled cloud server.

1) Core Management in Heterogenous Systems: Prior work
has extensively studied core management for heterogeneous
systems [25, 54, 58, 60, 71, 73], such as big.LITTLE,
but mostly for throughput-oriented applications. Octopus-
Man [60] is a state-of-the-art core manager for LC applica-
tions, and is most related to our work. However, because it
optimizes for energy consumption, the core selection algorithm
is rather simple: it always selects small cores first, then big. It
also restricts the number of LC applications to only one per
node. There has been no related work that targets performance-
oriented colocation of LC applications in a heterogenous
environment. While PIMCloud focuses on PIM, its techniques
can also be applied to systems like big.LITTLE.

2) Data Placement in NUMA Systems: Data placement in
a NUMA system determines where the OS places memory
pages [18, 26, 56, 72]. As we show in Section III-A, when
memory stacks are augmented with computation capabilities,
data access by PIM cores within and across stacks may
resemble a (clustered) NUMA architecture. Data placement
for LC interactive services has only been studied in a small
number of previous proposals. For example, RackOut [57] and
Scale-Out ccNUMA [36] propose data aggregation techniques
and software caching of hot items for key-value stores to
improve data locality. Prior work has not, however, studied
data placement under colocation or varying resource alloca-
tions for LC applications. The distinguishing feature that LC
services bring to the system is that because LC applications
have fluctuating loads, core allocation changes dynamically
at runtime, which may require memory pages to also move
frequently. It is critical for data placement to be aware of the
real-time core allocation to reduce the amount of dynamic page
movement. This becomes even more critical in PIM-enabled
systems, because memory capacity per PIM stack (a few GBs)
is much less than a NUMA node (a few hundred of GBs),
leading to more memory contention and data movement.

III. IMPLICATIONS OF PIM TO LC APPLICATIONS

In this section, we first provide an overview of the PIM-
enabled system architecture we target, a general-purpose data-
center node with PIM capabilities. Then, we study the impact
of a variety of factors introduced by PIM to six diverse LC
applications on both latency and throughput.

TABLE I: System Specification

Brawn/CPU
Core

Haswell-like [70], 2.4 GHz, 4-way issue, 60-entry IQ,
192-entry ROB, 72-entry LQ, 42-entry SQ, 2-level branch
predictor with 1,024 18-bit BHSRs and 4,096 2-bit PHT
entries, 13mm2 per core (plus its private caches) [3].

L1 cache 32/32 KB private instruction/data cache, 8-way set-
associative, 3-cycle latency,

L2 cache 256 KB private, 8-way set-associative, 7-cycle latency.

L3 cache 2MB per slice (i.e. per CPU core) shared, 8-way set-
associative, 30-cycle latency, 7mm2 per slice [3].

Memory

8 GB per memory stack, HBM-like organization [4],
tCK =0.8 ns, tRCD=13.75 ns, tWR=15 ns,tCL=13.75 ns,
tRAS=27.5 ns, tRP=13.75 ns, tREFI =1.95 ns [39],
50mm2 area budget for components other than vault
controllers and interconnect [70].

Wimpy/PIM
Core

ARM Cortex A57-like [1], 2 GHz, each with a 32/32 KB
private i-/d-cache, 5mm2 per core (plus its private
caches) [2].

SerDes link 160 GBps bidirectional, 4 ns latency [70]

A. System Architecture Overview

Fig. 1 is a simplified diagram of the PIM-enabled datacenter
server that we target. On the right is the main CPU, containing
a traditional multicore processor with two levels of private
caches and a shared last-level cache (LLC). The CPU connects
to multiple memory devices using high-speed, high-bandwidth
SerDes links. Conventional DDR modules are replaced by 3D
memory stacks, whose logic layers are endowed with several
simple general-purpose cores (PIM cores). Such PIM stacks
constitute the CPU’s main memory, but their embedded cores
can also run programs independently. Stacks are connected to
each other via SerDes links, such that PIM cores can access
memory pages in other PIM stacks.

Because of power, area, and technology constraints in the
memory stacks, PIM cores are relatively small and low-
power, akin to Intel’s Silvermont [70] or ARM’s Cortex [49].
Meanwhile, CPU cores are larger and higher-performance,
along the lines of Intel’s Xeon [6] or Cavium’s ThunderX2 [8].
We assume that all processing elements are ISA-compatible,
similar to prior work [17, 34, 49, 70]. We also assume that all
cores are governed by a single OS, sharing a single address
space with identical page tables [14]. Unlike an accelerator
setup where a ”master” thread runs on CPU to offload jobs
to PIM, all cores are seen as regular processors by the OS
despite having different architecture and performance, and a
program can run on either the main CPU, PIM cores, or both.
The OS can migrate jobs between CPU and PIM cores.

Each PIM core has a private L1 cache, without L2 or shared
caches (inherited from prior work [70] and also justified in
Section III-B3). L1s are kept coherent using a low-overhead,
software-assisted coherence protocol [34]. Specifically, shared
read-write pages are not cacheable in PIM’s L1s. When an
application spans both CPU and PIM, they are not cacheable
in CPU’s LLC either. We also use the same dynamic classifi-
cation mechanism in [34] to identify private/shared and read-
only/read-write pages.

B. Methodology

1) Simulator: We modify zsim, a Pin-based simulator [63]
to model the PIM-enabled system described above. Table I
shows the detailed specification of the simulated system.

2) LC Applications: We study six diverse LC services (all
that can be compiled successfully in simulation) from Tail-
bench [44]. We use the integrated configuration of Tailbench
for easier simulation on zsim [44]. Request inter-arrival times
follow an exponential distribution [48]. For each simulation,
we instantiate the same number of application threads as the
number of available cores, and run an application for 30
seconds of simulated time (about 72 billion cycles), including
20 seconds of warmup and 10 seconds of execution, except for
Sphinx which we execute for 60 simulated seconds to collect
enough requests due to its higher latency and lower request-
per-second (RPS). The simulated execution time is consistent
with prior work on these applications, using zsim [43, 44].

Fig. 2 shows tail latency, defined as the 99th percentile
latency, with increasing RPS under CPU and two PIM stacks.
The QoS is set as the knee of the CPU curve [21], marked
with horizontal lines and recorded in Table II. We define max
load of a service as the maximum RPS under QoS. The data in
Table II is collected when running each application at max load
on the main CPU. Unlike typical PIM targets, LC applications
do not typically use high memory bandwidth.

3) Characterized Architectures: Compared to the main
CPU, PIM stacks have lower memory access latency, since
PIM cores are physically closer to memory; shallow memory
hierarchy, due to the limited area of the logic die that may
be better utilized with more cores rather than more cache;
wimpier cores, due to the power and area constraints that
cannot accommodate high-performance brawny cores.

To understand the impact of each of these factors brought
on by PIM, we enumerate all combinations of them, to study
eight different architectures, as listed in Table III, each with:
• High/low memory latency, i.e., with/without the off-chip

portion of memory accesses from the CPU (the measured
average memory access time is 65ns/155 CPU cycles and
21ns/50 CPU cycles, respectively).

• Deep/shallow memory hierarchy, i.e., with/without private
L2 and shared LLC.

• Brawny/wimpy cores, detailed in Table I.
We start from a baseline CPU socket with 4 brawny cores

and 8MB of LLC (the first architecture in Table III). Since
LC applications have to run for at least a few tens of
simulated seconds to get statistically meaningful tail latency,
and simulation time grows super-linearly with core count, we
characterize a relatively small system to keep simulation time
manageable (1-4 days per simulation). Later in Section V-B3,
we experiment with larger systems. We first study the impact
of core type and memory hierarchy on the CPU die (the first
four CPU-centric architectures with high memory latency in
Table III). Keeping the same CPU die area, core count varies
when core type or memory hierarchy changes. Since the area
of one brawny core is roughly 2.5 wimpy cores or 2 LLC

0
5000

10000
15000

20000
25000

30000

RPS

0

1

2

3

4
Ta

il
la

te
nc

y
(m

se
c)

(a) Silo

0
5000

10000
15000

20000
25000

30000

RPS

0

1

2

3

4

(b) Masstree

0 500
1000

1500
2000

2500

RPS

0

10

20

30

40

(c) ImgDNN

0
1000

2000
3000

4000
5000

RPS

0

10

20

30

40

(d) Xapian

0 500
1000

1500
2000

RPS

0

10

20

30

40

(e) Moses

0 10 20 30 40 50 60
RPS

0
3000
6000
9000

12000
15000
18000

CPU
PIM

(f) Sphinx

Fig. 2: Tail latency with increasing input load (RPS) on the main CPU and PIM stacks. Horizontal lines show the knee of the CPU
curve, which defines QoS. Vertical lines show max load (maximum RPS under QoS) achieved on the main CPU and PIM stacks.

TABLE II: Latency-critical applications

Application Silo Masstree ImgDNN Xapian Moses Sphinx
Domain In-memory DB Key-value store Image recognition Web search Real-time translation Speech recognition

Target QoS 1 ms 1 ms 7 ms 10 ms 10 ms 6 s
Per-core IPC 1.18 1.09 1.07 1.38 0.99 0.55
LLC MPKI 1.50 6.02 16.78 3.66 23.17 10.40

LLC Miss Rate 2% 12% 45% 37% 77% 47%
Memory Bandwidth (GB/s) 0.32 3.40 7.83 2.58 10.29 2.57

Memory Capacity (GB) 1.8 9.3 0.3 5.6 2.5 1.4

TABLE III: Impact of memory hierarchy, memory latency and core type. All the characterized architectures take up similar area,
enforced by varying the core count. Architectures that could be realized on the main CPU or PIM are categorized as CPU-/PIM-
centric. For each application, we evaluate its tail latency over the QoS target at low load (values larger than 1 represent QoS
violations), and normalized max load (higher is better). For each cell, the darker the green/red, the better/worse. Memory latency
in the last row is still low, but slightly higher than in Arch 5-8 due to the impact of data placement described in Section III-D.

Characterized Architecture Tail Latency/QoS Target Normalized Max Load (Max RPS under QoS)
ID MemLat Core MemHie #Cores Silo Masstree ImgDNN Xapian Moses Sphinx AVG Silo Masstree ImgDNN Xapian Moses Sphinx AVG

CPU-
centric

1 High Brawny Deep 4 0.22 0.21 0.33 0.37 0.26 0.26 0.28 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 High Brawny Shallow 6 0.36 0.24 0.28 0.40 0.35 0.29 0.32 0.89 0.85 1.17 1.33 1.41 1.25 1.15
3 High Wimpy Deep 10 0.71 0.40 1.29 0.62 0.84 0.56 0.74 0.68 0.72 0.00 0.87 0.55 1.50 0.72
4 High Wimpy Shallow 16 0.74 0.53 1.09 0.63 0.89 0.55 0.74 0.53 0.93 0.00 1.12 1.09 2.25 0.99

Un-
realistic

5 Low Brawny Deep 4 0.21 0.18 0.25 0.36 0.22 0.23 0.24 1.08 1.09 1.20 1.05 1.23 1.20 1.14
6 Low Brawny Shallow 6 0.28 0.20 0.20 0.37 0.27 0.27 0.26 1.05 1.00 1.66 1.50 1.82 1.50 1.42

PIM-
centric

7 Low Wimpy Deep 10 0.59 0.34 0.97 0.59 0.67 0.54 0.62 0.89 0.85 0.71 1.13 0.91 1.75 1.04
8 Low Wimpy Shallow 16 0.58 0.40 0.75 0.60 0.66 0.47 0.58 0.79 1.15 0.93 1.65 1.82 2.65 1.50

PIM 9 Low* Wimpy Shallow 8+8 0.61 0.47 0.95 0.61 0.77 0.49 0.65 0.68 1.09 0.63 1.58 1.50 2.50 1.33

slices,1 when core type is changed from brawny to wimpy,
core count is changed from 4 to 10 (or from 6 to 16) under
deep (or shallow) memory hierarchy.

We then study the impact of low memory latency by
(unrealistically) moving the CPU die to the memory side
(i.e., using the logic layers in memory stacks). Architectures
(Arch) 7&8 with low memory latency and wimpy cores
could potentially be realized on one or more PIM stacks,
and are therefore categorized as ”PIM-centric”. Arch 5&6 are
unrealistic to prototype on either CPU or PIM (low memory
latency and brawny cores cannot coexist), and are presented
for completeness of the characterization study.

1Under 22nm process, one simulated CPU core and its private caches take
roughly 13mm2, and one slice of LLC (2MB) is about 7mm2 [3]. The area
of one simulated PIM core together with its private cache is conservatively
estimated as 5mm2 under the same process [2], roughly a quarter of the total
area of one CPU core and one slice of LLC.

Finally, we study Arch 9, a realistic PIM architecture that
takes the area constraint of each PIM stack into account.
Given the 50mm2 area budget of the logic layer in a PIM
stack [70], the 16 wimpy cores have to be separated into two
memory stacks, 8 cores each. This complicates memory page
placement, and since cross-stack memory access increases
memory latency (detailed in Section III-D).

C. Implications of the PIM Architecture

We use tail latency and max load to quantify the impact of
PIM on LC applications, as shown in Table III. Tail latency
is collected at low load (i.e., less than 10% of per-core
utilization), and is normalized to the QoS of each application;
a value over 1 represents a QoS violation, marked as red in the
table. Max load is normalized to the load achieved in Arch 1.
Tail latency at low load tells us if an application can run any
load while meeting QoS, and if so, how low tail latency is.

Max load, on the other hand, shows the maximum throughput
regardless of how low tail latency is, as long as QoS is met.

1) Impact on Tail Latency: Tail latency is always lower
on brawny cores, regardless of memory latency or memory
hierarchy. Among CPU-centric architectures, wimpy cores
cause QoS violations for ImgDNN. This is consistent with
prior studies that show the advantage of brawny cores in tail
latency [22, 40], and consistent with current high-end servers
that still widely adopt brawny cores [7].

However, when the cores are closer to memory, wimpy cores
are also able to provide QoS guarantees. This is because when
memory latency is lower, the need to hide memory latency is
less critical, therefore the high issue width and the aggressive
out-of-order mechanisms are not necessary. Shallow memory
hierarchy increases tail latency for most applications due to
the lack of LLC to exploit data locality, but lower memory
latency helps reduce latency by up to 30% (average 16%).

2) Impact on Max load: As long as QoS is met, max load
is a more important metric to quantify the performance of LC
applications. From Table III, we find that:
• Arch 8, a PIM-centric architecture, on average outperforms

all CPU-centric architectures. Masstree, Xapian, Moses and
Sphinx achieve higher load on Arch 8 than on CPU-centric
architectures. This advantage remains on Arch 9. This
clearly shows the potential of PIM to many LC applications.

• Looking into Arch 8, applications’ preference degree to PIM
varies significantly: Masstree is only slightly better on PIM,
while Sphinx achieves more than doubled max load on PIM.

• Comparing architectures that only vary in memory hierar-
chy, the one with shallow memory hierarchy is usually more
appealing. This is in part because cloud services usually
have poor data locality and large memory footprints that
do not fit in the LLC [31, 65], as can be seen in the high
LLC miss rate in Table II. The benefit of shallow memory
hierarchy is larger when memory latency is low due to the
smaller LLC miss penalty.

• Lower memory latency significantly improves max load, by
up to 67% (average 26%), when comparing architectures
that only vary in memory latency.

D. Impact of Data Placement

We have shown the potential of PIM architectures for LC
applications: low memory latency, shallow memory hierarchy,
and many wimpy cores provide the highest max load on
average. When realizing the characterized PIM architecture
(Arch 8) in real PIM (Arch 9), the 16 wimpy cores have to
be separately placed in two memory stacks (shown in Fig. 1
and Table I), due to limited area in the logic layer of 3D
memories. Consequently, memory pages may spread across
stacks, i.e., memory accesses are no longer homogeneous: PIM
cores accessing data from neighbor stacks have slightly higher
access latency. This makes data placement critical to achieve
the best performance; reducing cross-stack communication
could maximize the benefits from low memory latency on
PIM. Comparing with Arch 8, Arch 9 considers the increase

Silo Masstree ImgDNN Xapian Moses Sphinx0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

R
P

S

Interleaving
Migration

First-touch
Replication

Concentrated

Fig. 3: Max load under various static (blue bars) and dynamic
(yellow and green bars) data placement policies, normalized to an
ideal policy with all local memory accesses (Arch 8 in Table III).
Each application uses cores from 2 PIM stacks.

of memory latency from cross-stack communication, and uses
first-touch as its static page policy (Section III-D1).

We study several widely used memory policies in NUMA
systems and apply them to the PIM-enabled system, by
essentially treating a PIM stack as a NUMA node. We define
a memory access to be local/remote if the memory page
requested is in the same/different stack as/from the core which
initializes the memory request. We currently do not consider
data layout and the heterogeneity of memory access latency
within a single PIM stack (e.g., if each on-chip core were
“closer” to a particular memory stack module), since the
latency difference between different vaults in the same stack is
almost negligible compared to the latency difference between
PIM stacks and between CPU and PIM.

1) Static Data Placement: page location is decided upon
its first access. There are three common static policies:
• Interleaving (IL): Interleave all pages across all nodes.
• First-touch (FT): Allocate in the node upon the first access.
• Concentrated (CC): Allocate in as few nodes as possible.

Under low load, when cores from a single node are enough,
CC is the best static policy providing the most local memory
accesses (memory bandwidth is far from saturation for these
applications). However, the best policy changes with input
load. When each application spans two memory stacks (Fig. 3),
FT outperforms IL and CC by up to 46%, because under FT,
private pages are always local to the core running the thread,
i.e., all private pages have local memory accesses. Fig. 4 shows
the memory page access breakdown by page type, including
private/shared pages, and read-only/read-write pages. FT is
38% better than CC and 46% better than IL for Sphinx, which
has over 95% of private page accesses.

2) Dynamic Data Placement: the location of pages can also
be dynamically manipulated at runtime. Current OSes support:
• Page migration that migrates pages to other nodes, based

on locality [72]. We explore migration for private pages.
• Page replication that replicates pages across nodes, usually

limited to read-only pages to avoid synchronization over-
heads. We replicate only shared read-only pages.
Yellow and green bars in Fig. 3 show the benefit of adding

page migration and replication on top of each static mem-
ory policy. Despite the non-negligible differences between
the three static memory policies, they all perform similarly

Silo

Masst
ree

Im
gDNN

Xapian
Moses

Sphinx
0

20

40

60

80

100

M
em

or
y

ac
ce

ss
es

(%
)

Shared R
Shared RW

Private R
Private RW

Fig. 4: Memory page access
decomposition.

0 20 40 60 80 100
Percentile (%)

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

N
or

m
.

ac
ce

ss
fre

q

Silo
Masstree

ImgDNN
Xapian

Moses
Sphinx

Fig. 5: Page access frequency
normalized to max frequency
per app.

after applying dynamic page migration and replication. Page
migration provides up to 40% improvement for applications
with mostly private pages, such as Sphinx. Page replication
provides up to 20% improvement for applications with many
shared read-only page accesses, such as ImgDNN.

E. Summary

The studies in this section offer two main takeaways:
• PIM has substantial potential to achieve higher performance

than CPU. More than half of the characterized applications
achieve better performance (i.e., max load) on PIM. Since
applications have different preferences over CPU and PIM,
it is critical to take such preferences into account during
resource management; running an application on the wrong
type of resource may cause QoS violations in the worst case.

• Data placement is critical to fully leverage the low memory
latency provided by PIM, and dynamic page placement must
be considered to achieve the best performance. Additionally,
LC applications have fluctuating loads that result in frequent
changes in core allocation, which in turn can lead to ex-
cessive page migrations/replications. Therefore, it is critical
for data placement to (1) be aware of any change in core
allocation to trigger dynamic page manipulation, and (2)
reduce the amount/overhead of dynamic page manipulation.

IV. PIMCLOUD DESIGN

Given the importance of managing cores and data place-
ment for LC applications, we design PIMCloud, a QoS-aware
resource manager for LC applications in PIM-enabled systems.

A. Design Principles

Resource management is trivial when there is only one
application per node; it can simply take up all the resources to
maximize its performance. A more common but challenging
scenario is multi-tenancy, i.e., multiple cloud applications
are colocated on the same node. Multi-tenancy is widely
adopted in the cloud to improve server utilization [15, 29, 30],
and the colocated applications may include one or more LC
applications [21, 55, 59], each has its own QoS requirement.
Given this scenario, PIMCloud follows three design principles:
• QoS-aware to meet the QoS of each co-scheduled LC appli-

cation sharing a node. Batch jobs are of lower priority, and

TABLE IV: Symbol definition.

Symbol Definition
N Number of LC applications
M Number of PIM stacks
C Number of CPU cores
P Total number of PIM cores (P/M cores/stack)
Ri Max load ratio of a CPU core over a PIM core

for app i (take ceiling if not divisible)
Ai=(ci, pi) Core allocation of app i,

with ci CPU cores and pi PIM cores
A ={Ai|i = 1..N} Core allocation

RPS(Ai) max RPS of app i under allocation Ai

thus can take resources that are unused by LC applications.
Being QoS-aware also indicates being adaptive, since the
resource requirement of an LC application changes with
time due to inevitably fluctuating loads.

• PIM-aware to manage PIM-introduced resources, includ-
ing heterogenous cores, heterogenous memory latency and
hierarchy, and data placement across stacks. Since differ-
ences in memory latency and hierarchy are encoded in
the core type, i.e., a CPU/PIM core always comes with
higher/lower memory latency and deep/shallow memory
hierarchy, managing the heterogenous memory latency and
hierarchy is encoded into our core management algorithm.
As a byproduct, PIMCloud is applicable to heterogeneous
systems with homogeneous memory like big.LITTLE.

• Rapidly converging to find feasible allocations fast by
reducing the allocation space as much as possible. Long
convergence time may lead to QoS violations and more
inertia to adapt to load changes. Rather than aiming at the
absolute optimal allocation at the expense of an exponen-
tially increasing convergence time, it is preferred to find a
good enough allocation as quickly as possible.

B. Core Allocation

We first introduce the intuition of core allocation in PIM-
Cloud, aiming at largely reducing the core allocation space.
The core allocation algorithm is detailed in Section IV-D.

Applications have different preferences with respect to core
type (Section III-B3). To quantify this preference, for each
colocated LC application i, we collect the maximum RPS
under QoS (i.e., max load) when running the application on
the main CPU and on all the PIM stacks (memory policy is
first-touch), namely LCPU and LPIM . We then obtain Ri by
(LCPU/C)/(LPIM/P), and taking the ceiling if the result is
not an integer. Intuitively, one CPU core provides the same
performance as Ri PIM cores for application i (note that Ri

can be less than one). A large Ri signals strong preference to
CPU cores. Unless otherwise stated, we number applications
in decreasing order of R, i.e., R1 ≥ R2... ≥ RN .

An ideal resource manager with unlimited time to make de-
cisions would exhaustively search the whole allocation space,
where each application can be allocated any number of CPU
and PIM cores. According to the stars and bars method [16],

there are
(
C+N
N

)(
P+N
N

)
different allocations. The problem

would be much simpler if all cores were identical: in that
case, the problem would be reduced to choosing how many
cores to allocate to each application, for which there are only(
C+P
N

)
possible assignments. For example, in a system with

4 CPU cores, 16 PIM cores, and 2 colocated applications, the
exploration space can be reduced from 2,295 to 190 possible
assignments. The difference also increases rapidly with more
colocated applications. The key to accelerating decision
convergence is to organize the search such that the space
looks as homogeneous as possible, while striving for an
almost optimal assignment.

The intuition behind our approach is to leverage the varying
preference degree of different applications, to sort applications
and cores such that cores are allocated to applications in order.
Given R1 ≥ R2... ≥ RN , we assign only CPU cores to
applications {1, 2, . . . k − 1}; only PIM cores to applications
{k+1, k+2, . . . N}; both (or either) core types to application
k. Note that, once we determine the optimal k and how many
cores of each type application k gets, allocating cores within
each application set {1, 2, . . . k− 1} and {k+1, k+2, . . . N}
becomes a homogeneous assignment problem, limited to de-
ciding how many cores each application gets.

In actuality, our mechanism is even simpler: Beginning
with application 1 , we determine how many CPU cores each
application needs to satisfy QoS and proceed to allocate them.
The first application that runs out of CPU cores and needs
additional PIM cores to satisfy QoS is called application k′.
Applications k′ + 1 through N receive PIM cores only. Note
that k′ may not be the optimal k above; this simplification is
intentional. Also, depending on the circumstances, other orders
might yield more efficient assignments. For example, if the
majority of applications prefer PIM cores, it might be more
optimal to allocate in reverse, from application N to 1. Or
it might make sense to allocate according to how “strongly”
applications prefer CPU or PIM cores (e.g., Ri = 10 and
Rj = 0.1 both prefer one core type ten times over the
other type). For simplicity, we systematically perform a 1-
to-N assignment in all cases, which our evaluation shows
that it yields significant gains. Any leftover cores can then
be assigned to BE jobs.

We now provide the theoretical backup of the mechanism.
Definition 1. A ≤ A′ if and only if

(1)
N∑
i=1

ci ≥
N∑
i=1

c′i, (2)
N∑
i=1

pi ≥
N∑
i=1

p′i, and

(3) ∀i = 1..N, RPS(Ai) ≤ RPS(A′i).
Definition 2. A is suboptimal if ∃A′ such that A ≤ A′.

Table IV includes all symbol definitions. Suboptimal alloca-
tions consume more cores, while producing less profit (lower
max RPS under QoS). To identify suboptimal allocations, we
start from N = 2. We find that in optimal allocations:
1. App 1 always gets fewer than R1 PIM cores if it has not
occupied all CPU cores, i.e., A is suboptimal if p1 ≥ R1 and
c2 > 0. To prove this, we can construct another allocation A′

by moving a CPU core from app 2 to app 1 in exchange for
R1 PIM cores. Formally, let c′1 = c1+1, p′1 = p1−R1, c

′
2 =

c2− 1, p′2 = p2+R1. The performance of app 1 remains the
same under A′. App 2 gets R1 more PIM cores at the cost
of one CPU core. Since R1 ≥ R2, it gets more PIM cores
than needed to recover its performance. Therefore, A ≤ A′.
2. Furthermore, the number of PIM cores of app 1 can be
reduced to R2, i.e., A is suboptimal if p1 ≥ R2 and c2 > 0.
Formally, we can construct A′ by setting c′1 = c1 + 1, p′1 =
p1 −R2, c

′
2 = c2 − 1, p′2 = p2 +R2, such that A ≤ A′.

In summary, the heterogeneity degree of app 1 is signifi-
cantly reduced, from P to min(R1, R2) = R2 PIM cores.

To generalize to N applications,

Theorem 1. For any allocation A, define k as the last appli-
cation that has CPU cores, i.e., ck > 0 and ∀i > k, ci = 0. A
is suboptimal if ∃x < k, px ≥ Rk.

Proof. Construct A′ = (A′1, A
′
2, ..., A

′
N) such that A ≤ A′.

A′i =


Ai if i 6= x and i 6= k

(ci + 1, pi −Rk) if i = x

(ci − 1, pi +Rk) if i = k

This means that, for any optimal allocation:
1) App k (middle app) separates all services into two classes.

We call applications with larger R value PIM-averse apps,
and those with smaller R value PIM-friendly apps.

2) For any PIM-averse app, its PIM cores are limited to a
number smaller than its R value. The more colocated jobs,
the lower the bound. Our characterization of Tailbench
shows that R ∈ [2, 8], with a median of 3. In practice,
we find that performance stays almost the same when
discarding a small number of PIM cores. This is because
heterogeneous core assignment results in worse usage
of LLC on the main CPU, as shared read-write pages
are non-cacheable (Section III-A. This offsets the higher
computation capabilities brought by the few PIM cores,
and increases the allocation space. Therefore, PIMCloud
disallows heterogenous cores for PIM-averse apps.

3) The middle app is the only one that may jointly have CPU
cores and more than Rmid PIM cores. As it is the last
service with CPU cores, if they are not enough, it may
need to also get more PIM cores to sustain its input load.

4) PIM-friendly apps only get PIM cores.
PIMCloud Rule: All applications except for the middle app
are assigned homogeneous cores. PIMCloud limits hetero-
geneity to only the middle app, and allocates only CPU cores
to PIM-averse apps, and only PIM cores to PIM-friendly
apps. This is thereafter referred to as the PIMCloud rule.
Applying it both initially and at runtime significantly reduces
the allocation space, making it the same as in homogeneous
multicore systems. Note that allowing only a single applica-
tion to span CPU and PIM may not be as beneficial in larger-
scale systems with more colocated applications; this design
decision is primarily made to make scheduling practical.
However, we show later in Section V-B3 that PIMCloud still

M $

P C

PIMCloud

LC Apps Initialize

Monitor

Upsize Downsize L

QoS

violation?

Excess

resources?

Y

N

Y

N

Slack > -1

Slack > -1

Slack d -1

Slack d -1

Choose
resource

Prepare
resource

Monitor Choose
victim

Adjust
allocation

M $

P C

M $

Fig. 6: Overview of the PIMCloud resource manager.

outperforms prior work in larger systems since it takes into
account resource preference through lightweight profiling.

C. Data Placement

We select CC as the default static page allocation policy
in the PIMCloud resource manager. Despite FT being the best
static page policy (Section III-D1), CC is the best policy when
cores are concentrated in one stack at low load, and the best
policy with dynamic data migration/replication, when cores
span multiple stacks at high load (Section III-D). We define
resident stack of each application as the default memory stack
for the OS to allocate memory pages for the application.

Dynamic data placement happens upon core reassignment of
applications that are allocated PIM cores. When load increases
and PIM cores from non-resident stacks are allocated, private
pages need to be migrated from the resident stack to another
stack, and shared read-only pages will be replicated. When
load decreases and PIM cores from non-resident stacks are
deallocated, private pages will be migrated back to the resident
stack. Replications of shared read-only pages may be removed.

However, due to the limited memory capacity per stack and
the application colocation, there may not be enough capacity
in the target stack to hold all pages to be migrated/replicated.
PIMCloud stops migrating/replicating when it runs out of
memory. Therefore, it is necessary to identify “important”
pages that benefit the most from dynamic data placement.

Fig. 5 shows the page access frequency distribution of each
application. All services have a small fraction of pages that are
accessed orders of magnitude more times than the rest. These
hot pages dominate memory accesses, and are critical to be
placed in the appropriate memory stack. Therefore, PIMCloud
always starts migration/replication from the hottest pages.

D. PIMCloud Resource Manager

Fig. 6 shows an overview of the PIMCloud manager.
1) Initialization: For each LC application, PIMCloud ini-

tializes a core allocation and a resident stack (Section IV-C).
This initialization tries to spread out resources to reduce
resource contention, while following the PIMCloud rule.

First, PIMCloud conducts a quick profiling step to obtain
the preference degree to CPU of each application. Profiling is
only triggered when a new/previously-unseen LC application
enters the system. A load generator is needed to generate
representative user requests at any given rate. During profiling,
it collects max RPS (not under QoS) for each LC application
on (a) one CPU core and (b) one PIM core, by injecting
sufficient requests over 500 ms in each case (1s in total),
and noting the achieved RPS. Since it takes much longer
to collect max load, PIMCloud approximates the preference

Algorithm 1: Downsize(A) to reclaim excess resources
from application A.

while Slack[A] > Threshold[A] do
goodSlack = Slack[A];
adjustCore(A, -1); // Remove a core from app A.
if removed core is PIM-remote then

migrate private pages (of the thread previously running on the
removed core) back to A’s resident stack;

if no more PIM core allocated in that stack then
remove all replicated pages in that stack;

monitor latency till latency stabilizes or slack < 0;
if slack[A] < 0 then

revert();
Threshold[A] = goodSlack;
monitor latency till latency stabilizes;

degree by taking the max RPS ratio. Verification by preference
degree using max load (collected offline) shows that the order
of applications remains unchanged. LC applications are then
sorted in decreasing order of their preference degree.

Applications are partitioned into M + 1 groups, such that
each group has dN/(M + 1)e applications. The first group
is scheduled to CPU cores with stack M being their resident
stack, and the ith(i ≥ 2) group is scheduled to cores in stack
i − 1, which is also their resident stack. Applications in the
same group equally partition the available CPU/PIM cores.
If a resident stack i runs out of memory, the OS will start
allocating memory from stack i+ 1, then i+ 2, ..., M , 1, ...

A BE pool is also initialized to save all unallocated cores
and memory capacity from LC applications, which can be used
for BE jobs if they exist, or powered off to save energy.

2) Performance Monitoring: PIMCloud continuously mon-
itors request latency every 100ms [21]. Less frequent mon-
itoring can reduce tail latency jitter, but also delays the
convergence of resource adjustments.

3) Latency Slack: This captures the distance of tail latency
from a QoS target [21, 51]. Slack<0 represents a QoS viola-
tion, while a large positive slack signals excessive resources.
To compute slack, latency is monitored for 5 consecutive
100ms intervals [21]. The median tail latency of the five
intervals is used to compute the slack. This smoothens out
short latency spikes that are not due to lack of resources.

E. Resource Adjustment

PIMCloud upsizes to counteract a QoS violation, and down-
sizes to reclaim excessive resources.

1) Downsize(A): gradually moves A’s cores to the BE pool
(Algorithm 1). Pages may be migrated/de-replicated. Latency
is then monitored in 100ms intervals until it stabilizes or a
QoS violation occurs, which triggers a revert of the downsize
operation. We use average rather than tail latency to monitor
stability, as it is more accurate in signaling the latency trend.
Core reassignment takes 2-3 intervals to stabilize, while page
manipulation takes 3-8 intervals, due to the overhead of page
manipulation, and the higher inertia until it reflects on an
application’s overall latency [43].

A downsize threshold is maintained for each application,
representing the least positive slack an application can sustain,
i.e., further reducing resources would result in a QoS violation.
A slack larger than the threshold signals opportunities to
reclaim excess resources (e.g., when load decreases). The
downsize threshold is initialized to 0, and is updated after
every failed downsize or successful upsize operation.

2) Upsize(A): shifts resources to applications with QoS
violations (Algorithm 2). Resources are obtained lazily and
eagerly. In the former case, upsize iterates through the appli-
cation list, shifting as many resources as possible to the next
job via downsize. Eventually excessive resources will move
to problematic jobs. In the eager case, it will also proactively
reclaim resources from the remaining applications.

If a remote PIM core is allocated, depending on the idle
memory capacity in the remote memory stack, pages will
be migrated/replicated in decreasing order of their access
frequency. If there is not enough memory capacity, PIMCloud
could benefit from aggressively swapping cold pages of other
applications in the remote stack. However, this causes severe
memory fragmentation; an application may end up with pages
spread across many stacks. This causes more page movements
when load drops, and complicates the management of data
placement. Therefore, only idle memory space is leveraged.
A thread is scheduled to run on the newly obtained remote
PIM core. This thread will not be context-switched with other
threads to avoid previous private pages becoming shared pages,
increasing memory access latency.

When the system is oversubscribed, PIMCloud commu-
nicates with the cluster-wide scheduler to trigger admission
control, so that some requests/applications are redirected to
another machine to reduce the system load. Note that PIM-
Cloud is a per-node resource manager, not a cluster-wide job
scheduler. We leave the interaction between these two to future
work. Once the QoS violation of application A is resolved, its
downsize threshold is updated to the current slack (minimum
positive slack), to avoid aggressive downsizing in the future.

3) adjustCore(A, count): adjust count cores for A. The
PIMCloud rule should still be satisfied afterwards.

When count = +1, A will always try to obtain a CPU core
first. This is regardless of A’s preference because we always
run out of CPUs before going to PIM cores. Since applications
are already sorted in decreasing order of their preference for
CPUs, if there is a CPU core left, all previous applications
have no PIM cores allocated (i.e., if a prior application has
PIM cores, this means that CPU cores are unavailable). If a
CPU core is not available, A is allocated PIM cores. PIMCloud
will try securing a PIM core on A’s resident stack if possible,
or a remote PIM core if otherwise. For any core type, it checks
the BE pool first, and then applications with smaller R value
than RA. If several applications can supply the desired type of
core, it chooses the application with the largest latency slack.

When count = −1, one core is moved from application
A to the BE pool. A CPU core will be removed if available.
It not, a remote PIM core (not in its resident stack) will be
removed, or a local PIM core if not available again.

Algorithm 2: Upsize to resolve QoS violations.
for each application A do

if Slack[A]>Threshold[A] then
downsize(A);
give released resources to the next application;

else
while Slack[A]<0 do

adjustCore(A, +1); // Obtain a core for app A.
if Failed to obtain a core then

admissionControl(); // System oversubscribed.
else

if obtained core is PIM-remote then
migrate private pages (of the thread scheduled

to run on the obtained core) to the remote
stack;

if this is the first remote core in that stack then
replicate shared read-only pages to the

remote stack;

monitor latency till latency stabilizes;
if Slack[A] > 0 then

Threshold[A] = Slack[A];

4) Application churn: When an application terminates and
exits, its allocated resources are recycled to the BE pool. When
a new job arrives, PIMCloud reranks all applications based
on their R-value. Suppose the new job is in rank i; it will
take one core from job in rank i + 1 if i 6= n; otherwise,
it will take one core from job in rank i − 1. This ensures
that the PIMCloud rule holds. PIMCloud will then choose the
stack with the most available space as the application’s resident
stack. If this initial allocation does not meet QoS, PIMCloud
will adjust the resources to resolve any QoS violations.

5) PIMCloud Overhead: Existing OSes provide inter-
faces for dynamic thread pinning (e.g., taskset in Linux,
100us/adjustment) and page manipulation (1us/4KB page or
250ms/1GB). This overhead of adjusting core allocation and/or
adjusting page placement is reflected in PIMCloud’s varying
monitoring time to wait for latency stabilization after any
resource adjustment (Section IV-E1).

To monitor page access frequency, a new field representing
the access frequency is added to each page table entry. It is
incremented for every memory access, and is reset periodically
to avoid overflow. Not being on the critical path of request
processing, maintaining page access frequency does not affect
application performance. We compare the tail latency of each
application with and without such frequency tracking, and
don’t observe any latency difference. To ease the process of
page migrations and replications, we additionally implement
a special syscall that takes two integers n, k as input,
and returns the n most-accessed memory pages from stack k,
together with their page type (private/shared, read-only/read-
write). The syscall returns results under 10ms, negligible
compared to the actual page manipulation.

Octopus-Man AMS Default PIMCloud-preference PIMCloud-core PIMCloud-memory

10 30 50 70 90
Load of ImgDNN (%)

10

30

50

70

90

M
ax

lo
ad

of
X

ap
ia

n
(%

)

(a) ImgDNN+Xapian

10 30 50 70 90
Load of Silo (%)

10

30

50

70

90

M
ax

lo
ad

of
Im

gD
N

N
(%

)
(b) Silo+ImgDNN

10 30 50 70 90
Load of Masstree (%)

10

30

50

70

90

M
ax

lo
ad

of
M

os
es

(%
)

(c) Masstree+Moses

10 30 50 70 90
Load of Moses (%)

10

30

50

70

90

M
ax

lo
ad

of
S

ph
in

x
(%

)

(d) Moses+Sphinx

10 30 50 70 90
Load of Xapian (%)

10

30

50

70

90

M
ax

lo
ad

of
M

as
st

re
e

(%
)

(e) Xapian+Masstree

10 30 50 70 90
Load of Sphinx (%)

10

30

50

70

90

M
ax

lo
ad

of
S

ilo
(%

)

(f) Sphinx+Silo

Fig. 7: Colocation of 2 LC applications. Y-axis is the maximum RPS (as a percentage of max load) of the second application when
the first application is at a given RPS (x-axis) and both applications meet QoS. The three competing policies are shown in curves,
while PIMCloud is shown in bars, broken down to identifying core preferences (PIMCloud-preference), dynamic core adjustment
(PIMCloud-core), and dynamic data placement (PIMCloud-memory).

10 30 50 70 90
Load of Xapian (%)

10

30

50

70

90Lo
ad

of
Im

gD
N

N
(%

)

55 50 45 45 X

50 45 40 35 X

50 40 20 5 X

25 15 X X X

5 X X X X

(a) Default

10 30 50 70 90
Load of Xapian (%)

95 95 90 80 X

95 95 X X X

X X X X X

X X X X X

X X X X X

(b) AMS

10 30 50 70 90
Load of Xapian (%)

95 95 95 15 X

95 95 15 X X

35 30 15 X X

X X X X X

X X X X X

(c) Octopus-Man

10 30 50 70 90
Load of Xapian (%)

95 95 95 85 X

95 95 45 35 X

65 40 40 5 X

30 15 15 X X

10 X X X X

(d) PIMCloud

0%

20%

40%

60%

80%

100% M
ax

load
ofM

asstree
Fig. 8: Colocation of Xapian, ImgDNN and Masstree. Each cell
represents the max RPS (as a percentage of max load) of Masstree
when Xapian and ImgDNN run at given RPS (x and y axes),
and all three applications meet QoS. Crossmarks mean that QoS
cannot be met concurrently.

V. EVALUATION

A. Methodology

We use the same simulated system and applications as
described in Section III-B. Each application is instantiated
with a fixed 20 threads. We focus our evaluation on single
machine experiments, since PIMCloud is a per-node resource
manager, and can be installed on every node in a large clus-
ter/datacenter. For distributed applications spanning multiple
nodes, the system’s cluster manager handles load balancing
across nodes hosting the same application, and PIMCloud
manages the resources of each node’s application instances.

We compare against three resource managers:
• Default relies on the OS to manage resources. Threads are

mapped to cores in a round-robin fashion. Cores are chosen
randomly during context switches. First touch (FT) is the
static memory policy, with no dynamic page manipulation
(same for the other two resource managers below).

• AMS [70] is designed for batch applications in PIM sys-
tems. It profiles cache miss ratio curves leveraging hardware
support (not available on commodity servers), to identify
applications’ preferences to PIM. It then schedules threads
one at a time, according to their preferences.

• Octopus-Man [60] manages LC applications in hetero-
geneous multicores, like ARM big.LITTLE [24]. Since it
optimizes for energy efficiency, it always starts from small
cores, and then switches to big cores until QoS is met.
As discussed in Section II-B1, Octopus-Man assumes a
single LC service per node, and thus does not consider any

application ordering during resource allocation. We com-
pare against an optimized version of Octopus-Man, which
“magically” enumerates all possible application orderings,
and selects the best without incurring any overheads.
We first evaluate colocation under constant loads. Due to too

many possible application mixes (i.e., 15/30/15/6 2-/3-/4-/5-
app mixes), we select a few representative ones but still cover
a diverse set of colocation scenarios. Assume applications are
sorted by their preference degree to CPU cores, we choose 6 2-
app mixes: (A1, A5) and (A2, A6) with strong complementary
preferences; (A3, A5) and (A4, A6) with slight complementary
preferences; (A1, A2) and (A3, A4) with similar preferences.
We also make sure that every application appears an equal
number of times across all mixes, i.e., each application appears
precisely twice in the six 2-app mixes. We also choose a 3-app
combination (A1, A3, A5) that has applications with a strong,
medium, and weak preference for CPU cores, and a 6-app mix
(A1, A2, ..., A6) with all studied applications.

For each mix, we sweep the load of each service from 5%
to 100% of their respective max load (i.e., the maximum RPS
under QoS when running alone on all available cores), in 5%
load increments. For each run, we warm up for 20 seconds of
simulated time (48 billion cycles), and then run each resource
manager until it converges, i.e., it either finds an allocation
without QoS violations, or determines that no viable allocation
exists that meets QoS. We record all load combinations that
are able to meet QoS with each resource manager.

B. Constant Load

1) Colocation of 2 LC Applications: Fig. 7 shows perfor-
mance across six diverse 2-app mixes. The three competing
policies are shown in lines. The Y-axis shows the maximum
RPS of the second application when the first application is at a
given RPS (x-axis) and both applications meet QoS. PIMCloud
is broken down to three components shown as stacked bars.
PIMCloud-preference shows the result when allocating only
the preferred type of cores to each application, based on their
R values. Dynamic core adjustments and data placement are
shown as PIMCloud-core and PIMCloud-memory.

Default is not aware of core heterogeneity, and fails to
allocate the right type of cores to applications with strong
preference, such as ImgDNN, Silo and Sphinx. Therefore,

PIMCloud Octopus-Man Default AMS

10 30 50 70 90
RPS of ImgDNN (%)

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
of

B
E

(%
)

(a) ImgDNN+Xapian

10 30 50 70 90
RPS of Silo (%)

0

10

20

30

40

50

60

(b) Silo+ImgDNN

10 30 50 70 90
RPS of Masstree (%)

0

10

20

30

40

50

60

(c) Masstree+Moses

10 30 50 70 90
RPS of Moses (%)

0

10

20

30

40

50

60

(d) Moses+Sphinx

10 30 50 70 90
RPS of Xapian (%)

0

10

20

30

40

50

60

(e) Xapian+Masstree

10 30 50 70 90
RPS of Sphinx (%)

0

10

20

30

40

50

60

(f) Sphinx+Silo

Fig. 9: Colocation of 2 LC and 1 BE applications. The first LC application is at a given RPS, and the second one is at 10% of its
max load. Y-axis is throughput of the BE application when both LC applications meet their QoS targets.

Default performs the worst in mixes with these applications
(Fig. 7a, 7b, and 7f). PIMCloud-preference alone outperforms
Default by being aware of the preference of each application.

AMS identifies each application’s core preferences success-
fully most of the time, using cache miss ratio curves.However,
it is not designed for LC applications whose core requirements
vary with input load. AMS assumes a fixed number of cores
for each application, which works only for throughput-oriented
jobs. As shown in Fig. 7, the curves for AMS are almost
always flat, as each application occupies one type of cores
regardless of the load of the other application. Moses+Sphinx
(Fig. 7d) is the only exception. According to their miss ratio
curves, both of them prefer PIM stacks, and thus are both
scheduled to PIM cores(CPU cores are always idle).

Octopus-Man is not preference-aware: it always tries small
cores first, and if not meeting QoS, it tries big cores. Because
we evaluates an optimal version of Octopus-Man by enumer-
ating all possible application orderings, the best ordering is
usually the preference-aware one, similar to AMS. In addition,
it also does not explore heterogeneous core allocations, and
thus performs similarly to AMS in many cases.

PIMCloud outperforms all three policies. First, PIMCloud is
preference-aware, and outperforms Default when applications
have strong preferences over core type. Second, PIMCloud
dynamically adjusts core allocations, and allocates heteroge-
nous cores to one of the colocated applications, outperforming
AMS and Octopus-Man when one application is at high load.
Finally, PIMCloud handles dynamic data placement, allowing
the system to sustain up to 30% (average 9.5%) additional load
under QoS. Finally, regarding effective machine utilization
(EMU) [51], which captures the total load under QoS of all co-
scheduled jobs, Default, AMS, Octopus-Man, and PIMCloud
achieve on average 89%, 93%, 97%, and 121% EMU, respec-
tively. PIMCloud achieves up to 80%, 80% and 70% (average
32%, 28% and 24%) higher EMU than Default, AMS, and
Octopus-Man, respectively. Dynamic core adjustment and data
placement each contribute up to 60% and 30% higher EMU
(average 17% and 10%).

2) Colocation of 3 LC Applications: PIMCloud works for
any number of colocated LC applications. Resource alloca-
tion becomes more critical with more colocated jobs. Fig. 8
shows colocation of the 3-app mix. Compared with Default,
PIMCloud improves max load for Masstree by 5-40% when
applications are at varying load points. Following the cache

0 5 10 15 20
Convergence time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

2-app
3-app
6-app

(a) # Applications

0 5 10 15 20
Convergence time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(4,16)
(8,32)
(16,64)

(b) System size

Fig. 10: PIMCloud Scalability.

miss ratio curves, AMS schedules Masstree to CPU cores,
and ImgDNN and Xapian to PIM cores. When the aggregate
load of ImgDNN and Xapian increases, the static allocation
of AMS does not meet QoS. Octopus-Man outperforms AMS
as it allocates CPU cores when PIM cores are insufficient.
PIMCloud is able to further push the “pareto frontier” to the
bottom right, meeting QoS under for more load combinations.
In summary, PIMCloud achieves up to 50%, 85% and 70%
higher EMU than Default, AMS, and Octopus-Man.

3) Scalability: PIMCloud can be applied to any number of
colocated applications at any system scale (i.e., any number
of CPU cores and PIM stacks), despite the evaluation above is
done on a relatively small system. We now study the scalability
of PIMCloud with respect to the number colocated applica-
tions and the system size using convergence time, i.e., the time
required for PIMCloud to find a feasible allocation without
any QoS violations, or conclude that no viable allocation
exists. The overhead of the online profiling is one second
per application before allocation starts. Fig. 10a shows the
CDF of convergence time for 2-, 3- and 6-app mixes, and
Fig. 10b shows that of the 3-app mix with 4/16, 8/32, and
16/64 CPU/PIM cores. Convergence time varies from zero
time, when the initial allocation achieves QoS, to 10.2 and
10.6, 16 seconds for 2-, 3- and 6-app mixes respectively.
The max convergence time increases sub-linearly with more
colocated applications and larger systems, despite the fact that,
theoretically, the allocation space increases exponentially. In
more than 50% of cases, PIMCloud converges in 3, 5 and 8 s
for 2-, 3-, and 6-app mixes respectively. For 16 CPU cores,
PIMCloud still converges in 6 s more than 50% of the cases,
with the maximum convergence time being under 20 s.

4) Colocation with BE applications: We also evaluate
PIMCloud with the presence of best-effort (BE) jobs running
in the background, by colocating one BE and two LC applica-
tions. We construct a CPU and memory intensive 20-threaded
BE job using microbenchmarks [28], which achieves higher
throughput when utilizing all PIM cores. This mimics data-
intensive applications that tend to favor PIM [49, 53, 61].

Fig. 9 shows the BE throughput, when the first LC appli-
cation (LC1) has varying load, and the second LC application
(LC2) is fixed at 10% of max load. Default does not provide
core isolation, while AMS does not isolate cores within CPU
or PIM. AMS schedules one application to either CPU or PIM.
Since there are three applications, at least two of them will
be scheduled to the same type of cores, leading to contention.
The lack of core isolation leads to BE taking most resources,
and LC services violating their QoS under Default and AMS.
Octopus-Man allocates cores exclusively for each application,
outperforming Default and AMS significantly. Compared to
PIMCloud, BE throughput is usually lower under Octopus-
Man, as Octopus-Man is oblivious of core preference, and
does not allow heterogeneous core assignment when one core
type is insufficient for applications at high load. Octopus-Man
always tries to allocate PIM cores to each LC application,
and the BE job tends to get the less preferable CPU cores.
PIMCloud identifies the preferences of each LC application,
and frees up more PIM resources for the BE job. When LC1

has strong preference to CPU and is at high load (Fig. 9a
and 9b), Octopus-Man achieves similar results to PIMCloud.
Achieved BE throughput is even higher than when LC1 is
at 10-50% of load. This is because Octopus-Man allocates
PIM cores to LC1 at low load, leaving the undesirable CPU
cores for the BE job. However, as the load increases, PIM
cores are insufficient. Octopus-Man will then schedule the LC
service to CPU cores, freeing up more PIM cores for the
BE job, resulting in higher throughput. Due to better page
management, BE throughput is still higher with PIMCloud.

C. Fluctuating Load

PIMCloud is designed to handle various load patterns in LC
applications. To evaluate dynamic load, we colocate two LC
applications, Moses and Xapian. These two applications do not
have strong preference over core type, so they favor Default.
We keep Xapian at constant load, and gradually increase and
then decrease the load of Moses, to simulate a diurnal load
pattern [21]. Fig. 11 shows tail latency under Default and
PIMCloud, and resource allocations over time.

PIMCloud starts by placing Moses on CPUs and Xapian on
one PIM stack, allocating stack1 and stack0 as their residence
stacks, respectively. When both applications are at low load,
they are downsized to save energy. At 2 s, removing a CPU
core causes a QoS violation for Moses, which is quickly re-
solved after yielding the core back. At 10 s, PIMCloud detects
a QoS violation for Moses which signals a load increase, so the
core allocation is increased. Moses experiences a latency spike
every time load increases, but tail latency quickly recovers
after PIMCloud adjusts its allocation. PIMCloud performs

0
1000
2000
3000
4000

R
P

S

Moses
Xapian

10−1

100

Ta
il

La
tw

.
D

ef
au

lt

10−1

100

Ta
il

La
tw

.
P

IM
C

lo
ud

cpu
m0

m1

C
or

e
al

lo
c

0
10
20
30
40
50
60
70

S
ta

ck
0

U
til

(%
)

0 10 20 30 40 50

Time (second)

0
5

10
15
20
25
30

S
ta

ck
1

U
til

(%
)

Fig. 11: Latency and resource allocations with PIMCloud under
constant load for Xapian, and varying load for Moses. Latencies
are normalized to their respective QoS.

page migration and replication for Moses every time a remote
core is allocated, at 23 s and 25 s. After 30 s, PIMCloud
downsizes Moses due to the large latency slack. However,
under Default, Moses experiences long-lasting and severe QoS
violations in t = [20, 30] s, when Moses is at high load.

VI. CONCLUSIONS

We have proposed PIMCloud, a PIM-aware resource man-
ager for cloud environments that dynamically adjusts the
resource allocations of colocated latency-critical applications
to satisfy QoS. We show that PIMCloud improves effective
machine utilization by up to 70% and 85% (average 24% and
33%) under 2-app and 3-app mixes, compared to state-of-the-
art managers, and adjusts successfully under fluctuating load.

ACKNOWLEDGEMENT

This work was supported in part by NSF and the Semi-
conductor Research Corporation (SRC) through the DEEP3M
Center, part of the E2CDA program; and by DARPA and
SRC through the CRISP Center, part of the JUMP program.
Christina Delimitrou was partially supported by a Sloan
Foundation Research Award, a Microsoft Research Faculty
Fellowship, an Intel Rising Star Award, a Google Faculty
Research Award, and NSF grants NeTS CSR-1704742 and
CCF-1846046. The authors wish to thank the COE/CIS/Tech
Information Technology Support Group, in particular Michael
Woodson, for their technical assistance.

REFERENCES

[1] “Cortex-A57 overview,” https://developer.arm.com/ip-products/
processors/cortex-a/cortex-a57.

[2] “Cortex-A57, wikichip,” https://en.wikichip.org/wiki/arm holdings/
microarchitectures/cortex-a57.

[3] “Haswell, wikichip,” https://en.wikichip.org/wiki/intel/
microarchitectures/haswell (client).

[4] “High bandwidth memory (hbm) dram,” https://www.jedec.org/
standards-documents/docs/jesd235a.

[5] “Hmc specification 2.0,” Hybrid Memory Cube Consortium.
[6] “Intel Xeon processors,” https://www.intel.com/content/www/us/en/

products/processors/xeon.html.
[7] “Server market share in q3 2020,” https://www.extremetech.com/

computing/318217-amd-arm-both-increased-their-server-market-share-
in-q3-2020.

[8] “ThunderX2 ARM-based processors,” https://www.marvell.com/server-
processors/thunderx2-arm-processors/.

[9] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in International
Symposium on Computer Architecture (ISCA), 2015.

[10] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in International
Symposium on Computer Architecture (ISCA), 2015.

[11] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions:
a low-overhead, locality-aware processing-in-memory architecture,”
in ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), 2015.

[12] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and practical near-dram acceleration architecture
for large memory systems,” in 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2016.

[13] O. O. Babarinsa and S. Idreos, “Jafar: Near-data processing for
databases,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2015.

[14] A. Barbalace, A. Iliopoulos, H. Rauchfuss, and G. Brasche, “It’s time to
think about an operating system for near data processing architectures,”
in Proceedings of the 16th Workshop on Hot Topics in Operating
Systems, 2017.

[15] L. Barroso and U. Hoelzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis
lectures on computer architecture, 2013.

[16] P. Billingsley, Probability and measure. John Wiley & Sons, 2008.
[17] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,

R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google workloads for consumer devices: Mitigating data movement
bottlenecks,” in Proceedings of the 23rd International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[18] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum,
“Scheduling and page migration for multiprocessor compute servers,”
in Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
1994.

[19] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS prediction on non-preemptive accelerators to
improve utilization in warehouse-scale computers,” in Proceedings
of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017.

[20] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: QoS awareness
and increased utilization for non-preemptive accelerators in warehouse
scale computers,” in Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2016.

[21] S. Chen, C. Delimitrou, and J. F. Martı́nez, “PARTIES: QoS-aware
resource partitioning for multiple interactive services,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

[22] S. Chen, S. GalOn, C. Delimitrou, S. Manne, and J. F. Martı́nez, “Work-
load characterization of interactive cloud services on big and small server
platforms,” in International Symposium on Workload Characterization
(IISWC), 2017.

[23] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A novel processing-in-memory architecture for neural network

computation in reram-based main memory,” in 43rd Annual International
Symposium on Computer Architecture (ISCA), 2016.

[24] H. Chung, M. Kang, and H.-D. Cho, “Heterogeneous multi-processing
solution of exynos 5 octa with arm® big. little technology,” Samsung
White Paper, 2012.

[25] J. Cong and B. Yuan, “Energy-efficient scheduling on heterogeneous
multi-core architectures,” in International Symposium on Low Power
Electronics and Design (ISLPED), 2012.

[26] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic management: A holistic approach
to memory placement on numa systems,” in Proceedings of the 18th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[27] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[28] C. Delimitrou and C. Kozyrakis, “iBench: Quantifying interference for
datacenter workloads,” in Proceedings of the 2013 IEEE International
Symposium on Workload Characterization (IISWC). Portland, OR,
September 2013.

[29] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware Scheduling
for Heterogeneous Datacenters,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[30] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and
QoS-Aware Cluster Management,” in Proceedings of the Nineteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[31] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clear-
ing the clouds: A study of emerging scale-out workloads on modern
hardware,” in Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2012.

[32] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
Y. He, and C. Delimitrou, “An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud
and Edge Systems,” in Proceedings of the Twenty Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), April 2019.

[33] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in International Conference on
Parallel Architecture and Compilation (PACT), 2015.

[34] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in Proceedings of the 2015
International Conference on Parallel Architecture and Compilation
(PACT), 2015.

[35] M. Gao and C. Kozyrakis, “HRL: Efficient and flexible reconfigurable
logic for near-data processing,” in International Symposium on High
Performance Computer Architecture (HPCA), 2016.

[36] V. Gavrielatos, A. Katsarakis, A. Joshi, N. Oswald, B. Grot, and V. Na-
garajan, “Scale-out ccNUMA: Exploiting skew with strongly consistent
caching,” in Proceedings of the Thirteenth EuroSys Conference, 2018.

[37] B. Gu, A. S. Yoon, D. Bae, I. Jo, J. Lee, J. Yoon, J. Kang, M. Kwon,
C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A framework
for near-data processing of big data workloads,” in 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016.

[38] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, O. Mike, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent offloading and mapping
(TOM): Enabling programmer-transparent near-data processing in gpu
systems,” in ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016.

[39] S. Hurkat and J. F. Martı́nez, “VIP: A versatile inference processor,” in
International Symposium on High-Performance Computer Architecture
(HPCA), 2019.

[40] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search using
mobile cores: Quantifying and mitigating the price of efficiency,” in
Proceedings of the 37th Annual International Symposium on Computer
Architecture, 2010.

[41] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis, “Shinjuku: Preemptive scheduling for µsecond-scale tail
latency,” in 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI}), 2019.

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a57
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a57
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a57
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a57
https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.extremetech.com/computing/318217-amd-arm-both-increased-their-server-market-share-in-q3-2020
https://www.extremetech.com/computing/318217-amd-arm-both-increased-their-server-market-share-in-q3-2020
https://www.extremetech.com/computing/318217-amd-arm-both-increased-their-server-market-share-in-q3-2020
https://www.marvell.com/server-processors/thunderx2-arm-processors/
https://www.marvell.com/server-processors/thunderx2-arm-processors/

[42] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-
Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in 42nd
Annual International Symposium on Computer Architecture (ISCA),
2015.

[43] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with
strict QoS for latency-critical workloads,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[44] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and evalua-
tion methodology for latency-critical applications,” in IEEE International
Symposium on Workload Characterization (IISWC), 2016.

[45] J. S. Kim, D. S. Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu, “Grim-filter: Fast seed location
filtering in dna read mapping using processing-in-memory technologies,”
BMC genomics, vol. 19, no. 2, p. 89, 2018.

[46] Y. C. Kwon, S. H. Lee, J. Lee, S. H. Kwon, J. M. Ryu, J. P. Son,
O. Seongil, H. S. Yu, H. Lee, S. Y. Kim, Y. Cho, J. G. Kim, J. Choi, H. S.
Shin, J. Kim, B. Phuah, H. Kim, M. J. Song, A. Choi, D. Kim, S. Kim,
E. B. Kim, D. Wang, S. Kang, Y. Ro, S. Seo, J. Song, J. Youn, K. Sohn,
and N. S. Kim, “25.4 a 20nm 6gb function-in-memory dram, based on
hbm2 with a 1.2tflops programmable computing unit using bank-level
parallelism, for machine learning applications,” in IEEE International
Solid- State Circuits Conference (ISSCC), 2021.

[47] J. H. Lee, J. Sim, and H. Kim, “Bssync: Processing near memory for ma-
chine learning workloads with bounded staleness consistency models,”
in International Conference on Parallel Architecture and Compilation
(PACT), 2015.

[48] J. Leverich and C. Kozyrakis, “Reconciling high server utilization and
sub-millisecond quality-of-service,” in Proceedings of the 9th European
Conference on Computer Systems, 2014.

[49] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heterogeneous
approach,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2018.

[50] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana,
“E3: energy-efficient microservices on smartnic-accelerated servers,” in
{USENIX} Annual Technical Conference ({ATC}), 2019.

[51] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture
(ISCA), 2015.

[52] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
increasing utilization in modern warehouse scale computers via sensible
co-locations,” in Proceedings of the 44th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2011.

[53] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim:
Enabling instruction-level pim offloading in graph computing frame-
works,” in International symposium on high performance computer
architecture (HPCA), 2017.

[54] R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, “Hipster: Hybrid
task manager for latency-critical cloud workloads,” in International
Symposium on High Performance Computer Architecture (HPCA),
2017.

[55] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander, “Twig: Multi-
agent task management for colocated latency-critical cloud services,”
in International symposium on high performance computer architecture
(HPCA), 2020.

[56] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-
out NUMA,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[57] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “The
case for RackOut: Scalable data serving using rack-scale systems,” in
Proceedings of the Seventh ACM Symposium on Cloud Computing
(SoCC), 2016.

[58] S. Panneerselvam and M. Swift, “Rinnegan: Efficient resource use in
heterogeneous architectures,” in Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation Techniques
(PACT), 2016.

[59] T. Patel and D. Tiwari, “CLITE: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers,” in
International symposium on high performance computer architecture
(HPCA), 2020.

[60] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mosse,

J. Mars, and L. Tang, “Octopus-man: Qos-driven task management for
heterogeneous multicores in warehouse-scale computers,” in IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015.

[61] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the impact
of 3d-stacked memory+ logic devices on mapreduce workloads,” in
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2014.

[62] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozych, “Het-
erogeneity and dynamicity of clouds at scale: Google trace analysis,”
in Proceedings of the Third ACM Symposium on Cloud Computing
(SoCC), 2012.

[63] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA),
2013.

[64] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-
memory accelerator for bulk bitwise operations using commodity dram
technology,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2017.

[65] A. Shahab, M. Zhu, A. Margaritov, and B. Grot, “Farewell my shared llc!
a case for private die-stacked dram caches for servers,” in International
Symposium on Microarchitecture (MICRO), 2018.

[66] K. Skadron, Y. Xie, J. F. Martı́nez, S. Swanson, and J. Patel, “CRISP:
Center for Research in Intelligent Storage and Processing in memory,” in
Government Microcircuit, Applications, and Critical Technology Conf.
(GOMACTech), 2018.

[67] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a si-
multaneous multithreaded processor,” in Proceedings of the Ninth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[68] A. Sriraman and T. F. Wenisch, “µ suite: a benchmark suite for mi-
croservices,” in International Symposium on Workload Characterization
(IISWC), 2018.

[69] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa, “ReQoS: Reactive
static/dynamic compilation for QoS in warehouse scale computers,” in
Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2013.

[70] P.-A. Tsai, C. Chen, and D. Sánchez, “Adaptive scheduling for sys-
tems with asymmetric memory hierarchies,” 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 641–654,
2018.

[71] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in 39th International Symposium on Computer
Architecture (ISCA), 2012.

[72] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating sys-
tem support for improving data locality on CC-NUMA compute servers,”
in Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
1996.

[73] S. Wang, Y. Liang, and W. Zhang, “Poly: Efficient heterogeneous
system and application management for interactive applications,” in
International Symposium on High Performance Computer Architecture
(HPCA), 2019.

[74] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “SMiTe: Precise
QoS prediction on real-system SMT processors to improve utilization
in warehouse scale computers,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2014.

	Introduction
	Related Work
	Resource Management in PIM-enabled Systems
	Resource Management for LC Applications
	Core Management in Heterogenous Systems
	Data Placement in NUMA Systems

	Implications of PIM to LC Applications
	System Architecture Overview
	Methodology
	Simulator
	LC Applications
	Characterized Architectures

	Implications of the PIM Architecture
	Impact on Tail Latency
	Impact on Max load

	Impact of Data Placement
	Static Data Placement
	Dynamic Data Placement

	Summary

	PIMCloud Design
	Design Principles
	Core Allocation
	Data Placement
	PIMCloud Resource Manager
	Initialization
	Performance Monitoring
	Latency Slack

	Resource Adjustment
	Downsize(A)
	Upsize(A)
	adjustCore(A, count)
	Application churn
	PIMCloud Overhead

	Evaluation
	Methodology
	Constant Load
	Colocation of 2 LC Applications
	Colocation of 3 LC Applications
	Scalability
	Colocation with BE applications

	Fluctuating Load

	Conclusions

